

Advanced Sustainable BIOfuels for Aviation

Deliverable D2.3: Compost agronomic protocol optimization trial

Consortium:

Acronym	Legal entity	Role
RE-CORD	CONSORZIO PER LA RICERCA E LA DIMOSTRAZIONE SULLE ENERGIE RINNOVABILI	CO
TRC	TOTAL RAFFINAGE CHIMIE SA	BEN
TRF	TOTAL RAFFINAGE FRANCE	BEN
SKYNRG	SKYENERGY BV	BEN
CENER	FUNDACION CENER-CIEMAT	BEN
ETA	ETA – Energia, Trasporti, Agricoltura Srl	BEN
CCE	CAMELINA COMPANY ESPANA S.L.	BEN
JRC	JOINT RESEARCH CENTRE – EUROPEAN COMMISSION	BEN
	CO Coordinator BEN Benefician	

CO...Coordinator, BEN...Beneficiary

'The sole responsibility for the content of this report lies with the authors. It does not necessarily reflect the opinion of the European Union. The European Commission is not responsible for any use that may be made of the information contained therein.'

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 789562.

BIO4A	D2.3: Compost agronomic protocol
DIO4A	optimization trial

General Information

Call identifier:	H2020-LCE-2017-RES-IA
GA Number:	789562
Topic:	LCE-20-2016-2017
Start date of project:	01/05/2018
Duration:	4 years (30/06/2023)
Work Package:	WP2: R&D Long-Term Strategy for HEFA production
Type:	Deliverable
Number:	D2.3
Title:	Compost agronomic protocol optimization trial
Due Date:	30/10/2021 (Month 42)
Submission date:	22/02/2022
Reference Period:	01/05/2018 – 30/10/2021
Prepared by:	Yuri Herreras (Lead), Javier Prieto, Tommaso Barsali
Responsible Person:	Yuri Herreras
Dissemination Level:	Public

INTERNAL MONITORING & REVISION TABLE					
REV.	DATE	DESCRIPTION	PAGES	CHECKED	APPROVED
1	14/02/2022	Original	47	JP	
2	21/02/2022	Revised	48	ТВ	JP
3	22/02/2022	Final	48	TB,JP	TB,JP

Document Type			
PRO	Technical/economic progress report (internal work package reports indicating work status)		
DEL	Technical reports identified as deliverables in the Description of Work	X	
МоМ	Minutes of Meeting		
MAN	Procedures and user manuals		
WOR	Working document, issued as preparatory documents to a Technical report		
INF	Information and Notes		

Dissen	Dissemination Level			
PU	Public	X		
PP	Restricted to other programme participants (including the Commission Services)			
RE	Restricted to a group specified by the consortium (including the Commission Services)			
СО	Confidential, only for members of the consortium (including the Commission Services)			
CON	Confidential, only for members of the Consortium			

Table of Contents

Tal	ole of Contents	3
1	Summary	4
2	Introduction	6
3	Trial definition	7
4	Materials and Methods4.1 Methodology94.1.1 Location 1 (L1) – Finca La Canaleja (Alcalá de Henares, Madrid)4.1.2 Location 2 (L2) – Finca Entresierras (Ciudad Real, Ciudad Real)4.2 Laboratory analyses 18	9
5	Results5.1.1L1 – Finca La Canaleja (Alcalá de Henares, Madrid)5.1.2L2 – Finca Entresierras (Ciudad Real, Ciudad Real)	20
6	Discussion6.1 Effect on plant phenology366.2 Effect on seed yield 366.3 Effect on seed weight376.4 Effect on seed oil content386.5 Height40	36
7	Annexes	41

BIO4A	D2.3:	Compost	agronomic
DIO4A	protoco	I optimizatio	n trial

1 Summary

Desertification is a form of land degradation in drylands. In parallel with the changing climate patterns observed in the rest of the world, Europe is registering rising temperatures combined with rainfall reduction, mainly in Mediterranean and Scandinavian regions.

In the framework of Work Package 2, Task 2.1., the Bio4A project has established a serial of trials to corroborate the possibility to reclaim cultivate marginal lands at risk of desertification while increasing the soil carbon content and resilience through the application of biochar and co-composted biochar, produce sustainable oils on underutilized lands and provide sustainable feedstock for the biofuel industry.

Fully characterised biochar from oxidative pyrolisis of wood and organic material e.g. solid fraction of digestate from Anaerobic Digestion) have been tested in various mixtures against the business-as-usual mineral fertilization treatment locally used in Spanish agriculture.

This test aims at demonstrating the performances on soil with improved resilience based on biochar alone, traditional compost and co-composted biochar (COMBI) addition.

Camelina sativa (L.), a very high drought tolerant plant, has been selected for cultivation on these tests. Camelina is a hardy crop resistant characterized by its root development that allows high utilization of water and nutrients. In order to accomplish the rotation crop principles, Camelina crop has been alternated with barley crop, establishing a simple rotation two years scheme: Camelina/Barley.

The usual crop rotation practice in these semi-arid areas is to alternate barley with a year of fallow. This practice favours a mineralization process and aggravates the effect of the erosive processes. The introduction of Camelina in rotation schemes, a cruciferous crop with a deeper root, has a number of advantages related to soil fertilization and structure like a reduction of soil erosion and use the leftover nutrients potentially polluting by leaching among others.

The present deliverable D2.3 is based on three years of trials in two agricultural marginal areas from Spain, located in Finca la Canaleja, Alcalá de Henares (Madrid) and Finca Entresierras, Ciudad Real (Castilla La Mancha).

The description of the treatments includes:

- <u>No fertilization</u>: No fertilization product has been applied in this treatment.
- Mineral fertilization: 250 kg/ha of NPK (8:24:8) as background fertilization
- COMBI containing 10% Biochar
- COMBI containing 15% Biochar
- COMBI containing 20% Biochar
- Biochar + 250 kg/ha of NPK (8:24:8) as background fertilization
- <u>100% Compost</u>

Preliminary results show that biochar and compost produce a positive effect on crop development, achieving yield increases of up to 25%-40% with respect to conventional fertilization practices.

Biochar presented a clear incremental effect (p<0.05) compared to the control and business-asusual NPK fertilization, this effect being more pronounced in very low rainfall conditions (86 mm from seeding to harvest in 2019 in Location L1 – La Canaleja).

The other treatments containing biochar also performed significantly better in lower rainfall conditions. This includes also, for example, the COMBI treatment compared to Compost 100%, which also suggests a clear synergistic effect of co-composting process of biochar with labile C organic material.

BIO4A	D2.3:	Compost	agronomic
DIO4A	protoco	ol optimizatio	n trial

After three years, co-composted biochar (COMBI) 15% and 20% percentage levels of biochar w/w resulted in the first and second highest mean yields (cumulating camelina and barley yields) compared to all treatments, including biochar alone and compost alone.

Looking at the dynamic of yields after three years, trends suggest that the effects on yield of cocomposted COMBI tend to become predominant, while those of Compost 100% – and also of Biochar 100%, it should be noted - seem to diminish more rapidly over time.

However, the total duration of the experiment is not sufficient to draw conclusions over the long-term effects of these treatments.

At the same time, positive effects have been observed on seed quality: seed weight and camelina oil content tend to increase when cultivated with compost and biochar.

In conclusion, the general recommendation on the agronomic protocol for oleaginous species cultivation, is that biochar can be seen as a promising candidate to increase the resiliency of agrosystems to prolonged dry spells in those regions like EU-MED where agriculture is rainfed and drought periods are more frequent.

However, further research is needed to better refine the optimal quantity of biochar per hectare and per type of soil.

In addition biochar, as a Negative Emissions Technology, offers the capability to permanently sequester C in soil, which provides a precious contribution to offsetting GHG emissions of the entire value chain.

Finally, where organic, nutrient rich material is available (e.g. solid fraction of digestate), the indication is to explore the possibility of co-composting (or, in alternative, of mixing) this material with biochar in order to increase the durability of its synergistic effects as a soil amendment.

BIO4A	D2.3:	Compost	agronomic
DIO4A	protocol	optimization	trial

2 Introduction

The Bio4A project objectives included in task 2.1 (WP2) are the following ones:

- Define the best biochar+compost agronomic protocol in order to upgrade marginal land with high risk of desertification, based on feedstock production in terms of kg oil per hectare: Deliverable D2.3 and Deliverable D2.5.
- Selection of high yielding camelina variety cultivated under marginal land with high desertification risk in Southern Europe: Deliverable D2.4 and Deliverable D2.6.

These activities have been performed in different trials during the two first years. In the third year, both objectives have converged in the same trial located in two locations.

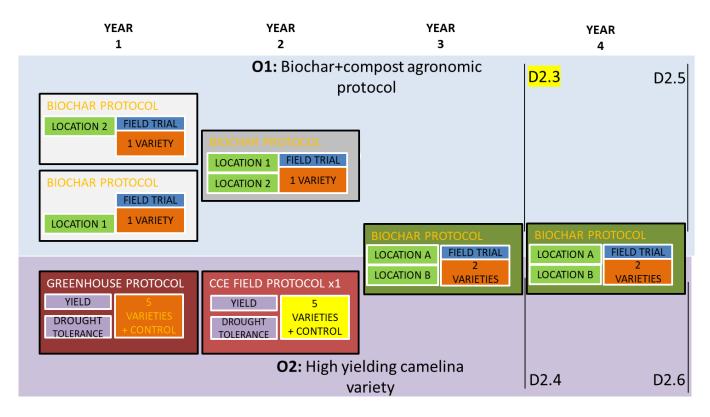


Figure 1. Bio4A objectives of the Task 2.1

BIO4A	D2.3:	Compost	agronomic
DIO4A	protocol	optimization	n trial

3 Trial definition

Camelina Company España has developed this study in Spain in marginal land with high risk of desertification. The selected locations have been Alcalá de Henares (Madrid) and Ciudad Real (Castilla La Mancha).

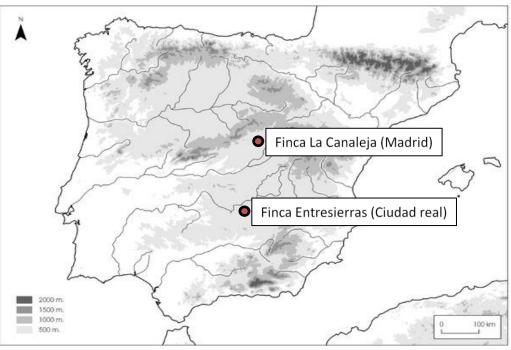
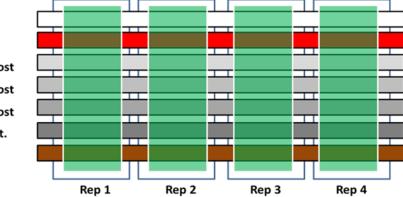


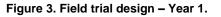
Figure 2. Trial locations

Trials have been designed in micro-plots with 4 replications on arid lands with no irrigation. The placement of the treatments was designed in lines in order to facilitate the management and avoid a possible contamination of the biochar and COMBI addition during soil preparation.

The description of the treatments includes:

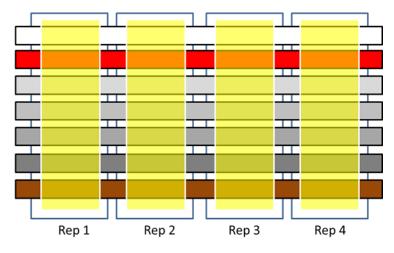
- <u>No fertilization</u>: No fertilization product has been applied in this treatment.
- <u>Mineral fertilization</u>: 250 kg/ha of NPK (8:24:8) as background fertilization
- COMBI containing 10% Biochar
- COMBI containing 15% Biochar
- COMBI containing 20% Biochar
- Biochar supplied by RECORD + 250 kg/ha of NPK (8:24:8) as background fertilization
- 100% Compost supplied by RECORD


Biochar and compost mixes have been applied only once, previous to the first-year experiment. Background fertilization (NPK), has been applied every year before sowing, but only to Mineral fertilization treatment and Biochar+NPK treatment. Dressing fertilization has been applied in all treatments during spring with the exception of "No fertilization treatment". D2.3: Compost agronomic protocol optimization trial



No fertilization Mineral fertilization 10% Biochar + Compost 15% Biochar + Compost 20% Biochar + Compost Biochar + mineral fert. 100% Compost

Camelina


BIO4A

No fertilization Mineral fertilization 10% Biochar + Compost 15% Biochar + Compost 20% Biochar + Compost Biochar + mineral fert. 100% Compost

Barley

No fertilization Mineral fertilization 10% Biochar + Compost 15% Biochar + Compost 20% Biochar + Compost 100% Biochar + NPK 100% Compost No fertilization Mineral fertilization

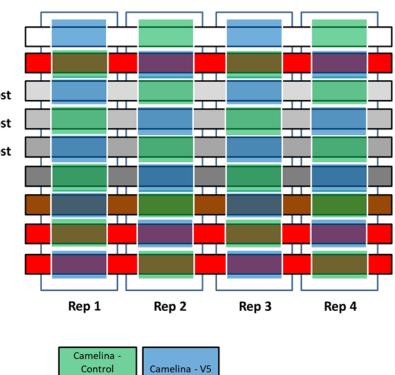


Figure 5. Field trial design – Year 3.

variety

4 Materials and Methods

4.1 Methodology

4.1.1 Location 1 (L1) – Finca La Canaleja (Alcalá de Henares, Madrid)

CCE has developed this trial in collaboration with the INIA (Instituto Nacional de Investigación y Tecnología Agraria). The trial has been performed following the design previously indicated with four replicates in 4 m x 3 m, plus 3 m corridor for the access needed for equipment and data collection by technicians.

Year 1

The agricultural labours performed in this trial include:

- 20th of January 2019: First plow pass.
- 15th of February 2019: Plot stacking.
- 27th of February 2019: Application of the fertilization treatments.
- 28th of February 2019: Treatments were incorporated with a pass of cultivator.
- 14th of March 2019: Trial was planted in rows of 12.5 cm of separation at a density of 8 kg/ha. As a consequence of the seeding date, a short cycle camelina variety was selected for the development of this trial (CCE26).
- 15th of February 2019 22th of February 2019: In order to assure an adequate germination, this trial was irrigated using an irrigation cannon during the first two weeks (5 times,10 mm/irrigation).
- 5th of April 2019: An application of 200 kg/ha of calcium ammonium nitrate was performed.
- 21th of June 2019: Trial was harvested. Due to the poor development of the plants, treatments were harvested by hand, using a ring of 0.28 m². The first replicate of all treatments was discarded due to the absence of camelina plants.

Figure 6. Pictures of L1 trial (La Canaleja, Madrid). Year 1: 14th March 2019 – Seeding (Top-left), 4th April 2019 -Seedlings (Top-right), 10th May 2019 - Elongation (Middle-left), 22th May 2019 – Irrigation Cannon (Middle-right), 22th May 2019 – Flowering (Bottom-left), 21th June 2019 – Harvest (Bottom-Right).

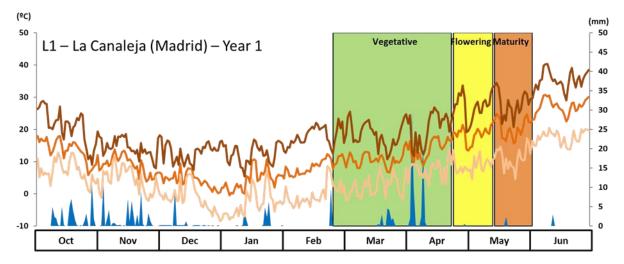


Figure 7. Meteorological data during L1 trial – Year 1 (La Canaleja, Madrid):

- Temperatures (°C): Maximum temperature (dark brown), Average temperature (brown), Minimum temperature (light brown).

- Precipitation (mm) (Blue).

- Phenological stages: Vegetative (Green area), Flowering (Yellow area) and Maturity (Brown area).

BIO4A	D2.3:	Compost	agronomic
DIO4A	protocol	optimization	trial

Year 2

The agricultural labours performed in this trial include:

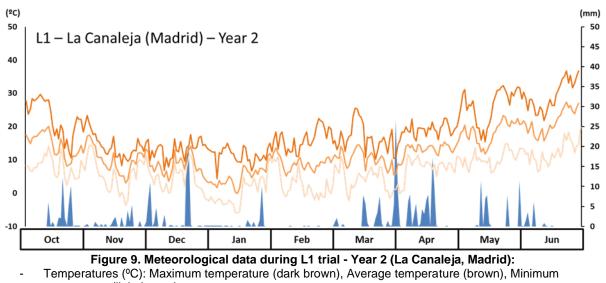

- 17th of October 2019: Cultivator pass.
- 7th of November 2019: Plot stacking and background fertilization (250 kg/ha "8-24-8) was developed.
- 8th of November 2019: Barley (Variety vinagrosa) was planted in rows of 12.5 cm of separation at a density of 180 sem/m².
- 5th of March 2020: An application of 180 kg/ha of calcium ammonium nitrate was performed in the corresponding treatments. No herbicide was applied in this trial.
- 28th of May 2020: "No fertilization" treatment was harvested by hand, using a ring of 0.28 m².
- *11th of June 2020:* Rest of treatments were harvested by hand, using the same methodology previously described.

Figure 8. Pictures of L1 trial (La Canaleja, Madrid) - Year 2: 2nd March 2020 – General view (Top-left), 2^{6th} May 2020 – General view (Top-right), 2nd March 2020 - No fertilization treatment (Middle-left), 2nd March 2020 - 20% biochar+compost treatment (Middle-right), 26th March 2020 – -No fertilization treatment (Bottom-leftt), 26th March 2020 - 20% biochar+compost treatment (Bottom-right).

BIO4A	D2.3:	Compost	agronomic
DIU4A	protoco	optimization	trial

temperature (light brown).Precipitation (mm) (Blue).

Year 3

The agricultural labours performed in this trial include:

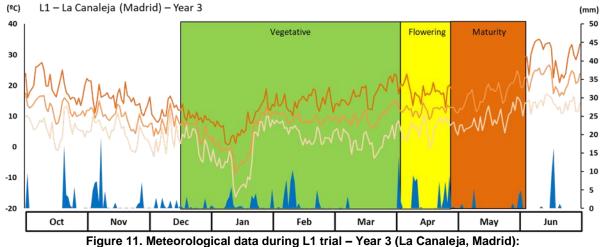

- 28th of October 2020: First plow pass.
- 11th of November 2020: Cultivator pass.
- 19th of November 2020: Application of 250 kg/ha of an NPK:8-24-8 as background fertilization (only in "mineral fertilization" and "biochar+mineral fertilization" treatments).
- 3th of December 2020: The trial was planted in rows of 12.5 cm of separation at a density of 8 kg/ha. Two varieties (Control, V5) were planted in order to evaluate their performance (Activity described in D2.4).
- 17th of March 2021: An application of 180 kg/ha of calcium ammonium nitrate was performed in all treatments with the exception of "No fertilization treatment".
- 9th of June 2021: The trial was harvested by hand, using a ring of 0.28 m². Two samples per plot were collected.

Figure 10. Pictures of L1 trial (La Canaleja, Madrid). Year 3: 14th December 2020 – Sowing (Top-left), 2th March 2021 – Cotyledon stage (Top-right), 1th June 2021 - Maturity (Bottom-left), 9th June 2021 – Harvest (Bottom-Right).

BIO4A	D2.3:	Compost	agronomic
DIU4A	protocol	optimization	n trial

Temperatures (°C): Maximum temperature (dark brown), Average temperature (brown), Minimum temperature (light brown).

- Phenological stages: Vegetative (Green area), Flowering (Yellow area) and Maturity (Brown area).

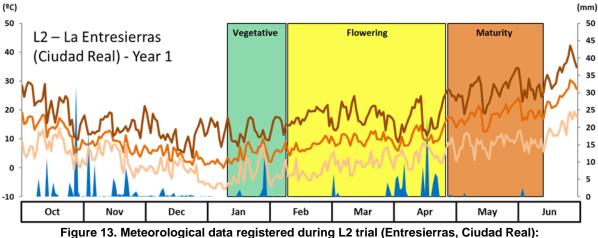
4.1.2 Location 2 (L2) – Finca Entresierras (Ciudad Real, Ciudad Real)

CCE has developed this trial in collaboration with the JCCM (Junta Castilla La Mancha). The trial has been performed following the design previously indicated with four replicates in 12.5 m x 1.2 m, plus 0.2 m corridor for the access needed for equipment and data collection by technicians.

Year 1

The agricultural labours performed in this trial include:

- 7th to 10th of January 2019: The land preparation consisted in a pass of cultivator and a pass of barbed harrow.
- 11th of January 2019: Application of the fertilization treatments.
- 12th of January 2019: Treatments were incorporated with a pass of rotovator.
- 14th of January 2019: Trial was planted in rows separated by 12.5 cm at a density of 8 kg/ha. The variety selected for this trial was a medium cycle camelina variety (CCE32).
- 30th of January 2019: A roller harrow pass was performed when camelina seedlings reached the rosette stage.
- 22th March of 2019: Dressing fertilization consisted in an application of 230 kg/ha of BONO D-CODER TOP (20N-6P-6K-2Mg-20S).
- 22th May of 2019: The height of each treatment was measured in the flowering stage (Peak height).
- 15th of June 2019: Harvest was performed with a microplot harvester.


⁻ Precipitation (mm) (Blue).

	D2.3:	Compost	agronomic
BIO4A	protoco	ol optimization	n trial

Figure 12. Pictures of L2 trial – Year 1 (Entresierras, Ciudad Real): 11th January 2019 – Seeding (Top-left), 21th February 2019 -Cotyledons (Top-right), 18th March 2019 – Root development (Middle-left), 18th March 2019 – Rosette (Middle-right), 17th April 2019 –Flowering (Bottom-left), 22th May 2019 – Maturity (Bottom-Right).

Temperatures (°C): Maximum temperature (dark brown), Average temperature (brown), Minimum temperature (light brown).

Phenological stages: Vegetative (Green area), Flowering (Yellow area) and Maturity (Brown area)

Precipitation (mm) (Blue).

BIO4A	D2.3:	Compost	agronomic
DIO4A	protoco	l optimization	trial

Year 2

The agricultural labours performed in this trial include:


- 25th of October 2019 and 28th November 2019: The land preparation consisted in two passes of cultivator, developed in the same direction of the treatments in order to avoid a possible mix.
- 29th of November 2019: Application of the background fertilization (only in the corresponding treatments). It consisted in a dose of 150 kg/ha of an NPK "10-12-20" fertilizer.
- 29th of November 2019: The trial was planted in rows separated by 12.5 cm at a density of 375 sem/m². The barley variety selected for this trial was Sfera.
- 14th February of 2020: Dressing fertilization consisted in an application of 230 kg/ha of BONO D-CODER TOP (20N-6P-6K-2Mg-20S).
- 18th February 2020. A broadleaf herbicide (Granstar super 50 sx, dose: 45 g/ha) was applied in order to control the weeds.
- 17th of June 2020: Harvest was performed with a microplot harvester.

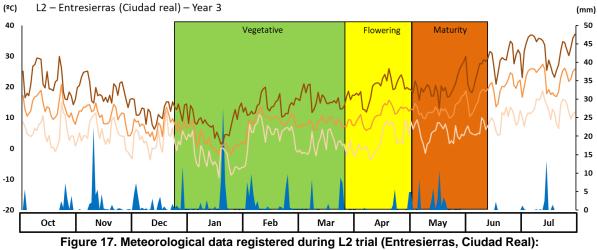
Figure 14. Pictures of L2 trial – Year 2 (Entresierras, Ciudad Real): 26th March 2020 – Barley in true leaves (Top-left), 17th April 2020 – Barley bolting (Top-right), 30th April 2020 – Barley fructification (Bottom-left), 5th June 2020 – Barley in harvest point (Bottom-Right).

BIO4A	D2.3:	Compost	agronomic
DIU4A	protoco	I optimization	n trial

Precipitation (mm) (Blue).

Year 3

The agricultural labours performed in this trial include:


- 4th to 24th of November 2020: The land preparation consisted of a pass of the cultivator and a pass of barbed harrow. A roller harrow pass was performed before sowing in order to facilitate the sowing depth setting.
- 25th of November 2020: The background fertilization (only in "mineral fertilization" and "biochar+mineral fertilization" treatments) consisted in 200 kg/ha D-CODER TOP8 (7N-10P-20K) incorporated during sowing (localized fertilizer).
- 25th of November 2020: Trial was planted in rows separated by 12.5 cm at a density of 650 seeds/m². Two varieties (Control, V5) were planted in order to evaluate their performance (Activity described in D2.4).
- 15th February of 2021: Dressing fertilization consisted in an application of 400 kg/ha of BONO D-CODER TOP (20N-6P-6K-2Mg-20S). This application was performed in all treatments with the exception of "No fertilization treatment".
- 13th March of 2021 to 16th April of 2020: The height of each treatment was measured during the flowering stage (Peak height).
- 15th of July 2021: Harvest was performed with a microplot harvester. A problem during this task was detected. Yield results have been affected by a malfunctioning of the combine, suspecting that there have been considerable losses and also, possible mixtures between the treatments.

BIO4A	D2.3:	Compost	agronomic
DIU4A	protoco	ol optimizatio	n trial

Figure 16. Pictures of L2 trial – Year 1 (Entresierras, Ciudad Real): 23th December 2020 – Cotyledons (Topleft), 24th February 2021 - Rosette (Top-right), 20th March 2020 – Flowering (Bottom-left), 22th May 2019 – Maturity (Bottom-Right).

Temperatures (°C): Maximum temperature (dark brown), Average temperature (brown), Minimum temperature (light brown).

- Precipitation (mm) (Blue).

- Phenological stages: Vegetative (Green area), Flowering (Yellow area) and Maturity (Brown area)

BIO4A	D2.3:	Compost	agronomic
DIU4A	protocol	optimization	trial

4.2 Laboratory analyses

Each replicate has been analyzed after harvest to determine the performance of each treatment regarding the project objectives.

Camelina samples (Year 1 and Year 3)

After harvest, a seed cleaning process was performed - employing a SLN cleaner (Pfeuffer)removing impurities and preventing their interaction in future analysis.

Figure 18. SLN cleaner-PFEUFFER.

Once the harvest sample of each variety has been cleaned, the one thousand grain weight (TGW) has been measured with a precision scale and a seed counter (Contador, Pfeuffer).

Figure 19. Seed counter (Pfeuffer)

Finally, samples have been analyzed by a Near Infrared Spectroscopy (NIRs) device. Measurements of humidity, fat content (total oil) and crude protein are obtained for each sample.

BIO4A	D2.3:	Compost	agronomic
DIO4A	protocol	optimization	trial

Figure 20. Near Infrared Spectroscopy device (FOSS DS2500).

Barley samples (Year 2)

Barley samples have been analyzed by the research centre which has developed the trial:

- L1 Instituto Nacional de Investigación y Tecnología Agraria
- L2 JCCM (Junta Castilla La Mancha)

In both cases, the analysis has consisted of conditioning the harvested sample and measuring yield.

5 Results

CCE has measured the following agronomic traits in camelina trials (year 1 and year 3):

- Cycle duration (days)
- Yield (kg seed/ha)
- Weight of 1,000 seeds
- Seed quality characteristics oil content (%), moisture (%), oleic acid (%).

In addition, differences between treatments were observed in the plant development during the performance of the trial.

In the case of barley trials (year 2), in both locations the following parameters have been determined:

- Cycle duration (days)
- Yield (kg seed/ha)

5.1.1 L1 – Finca La Canaleja (Alcalá de Henares, Madrid)

Year 1 (Camelina cultivation)

Cycle duration (days)

The cycle duration in this trial was 99 days distributed in 60 days of vegetative stage (Cotyledons and rosette), 20 days of flowering and 20 days of maturity.

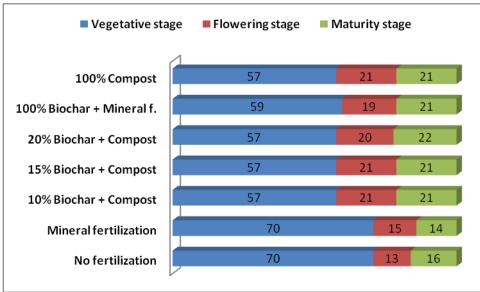
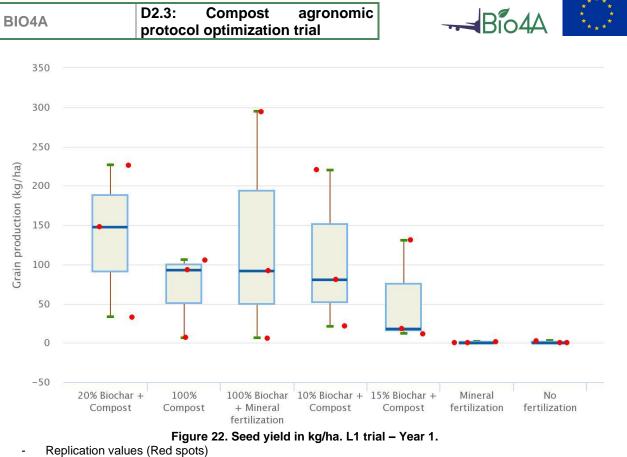
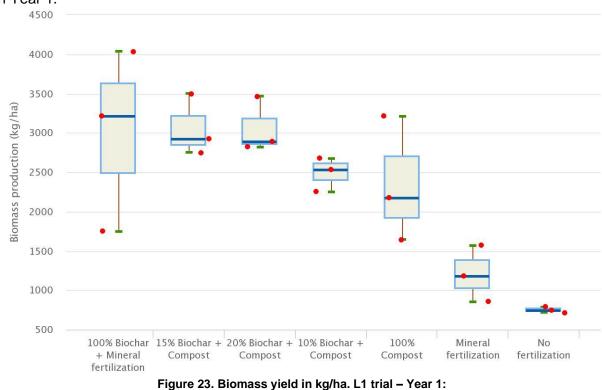



Figure 21. Cycle duration in days. L1 trial – Year 1.

<u>Yield (kg seed/ha)</u>


Seed yield in this trial has been very poor due to the late seeding date and the extremely difficult climatologic conditions. However, the treatments with an input of Biochar have shown a better performance.

- _ Lower to upper quartile (Blue area)
- Median (Dark blue line) -
- Minimun to maximun (Segment)

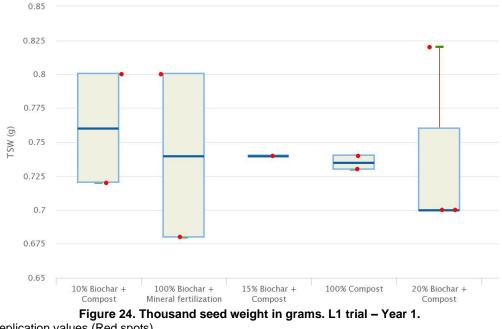
Biomass yield (kg biomass/ha)

Given the poor seed yield harvest, CCE decided to include an additional measure for this camelina trial. The biomass yield, measured in kg of biomass per hectare has been measured in Year 1.

Replication values (Red spots)

BIO4A	D2.3:	Compost	agronomic
DIU4A	protocol	optimization	trial

- Lower to upper quartile (Blue area)
- Median (Dark blue line)


-

- Minimun to maximun (Segment)

The addition of Biochar has shown a positive effect on increased biomass production. The mineral fertilization + Biochar treatment has registered an increment of almost a 250% comparing the Mineral fertilization treatment (treatments where biochar effect can be isolated). Also, the rest of the treatments with biochar have shown higher biomass production than the treatments without this compound.

Weight of 1,000 seeds (TSW)

The variety used for this trial has been a short cycle camelina variety (CCE26), which is characterized by a low seed size (0.7-1.0 g per 1000 seeds). "No fertilization" and "mineral fertilization" treatments have no data in this feature due to the low amount of seed harvested (lower than 1000 seeds). However, significant differences in this trait have not been observed between the different treatments.

- Replication values (Red spots)
- Lower to upper quartile (Blue area)
- Median (Dark blue line)
- Minimun to maximun (Segment)

Seed quality characteristics

Significant differences in moisture and oil content have not been observed between the different treatments.

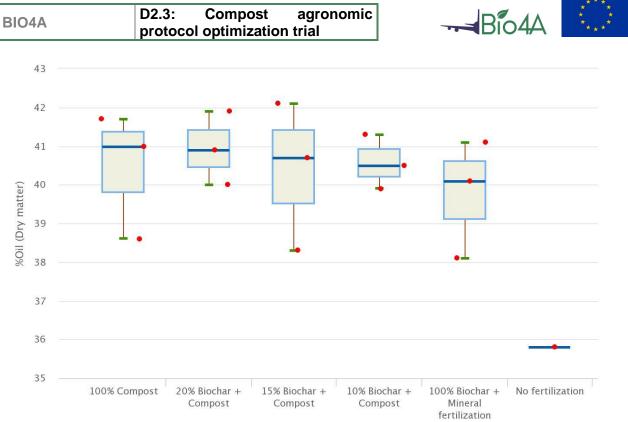
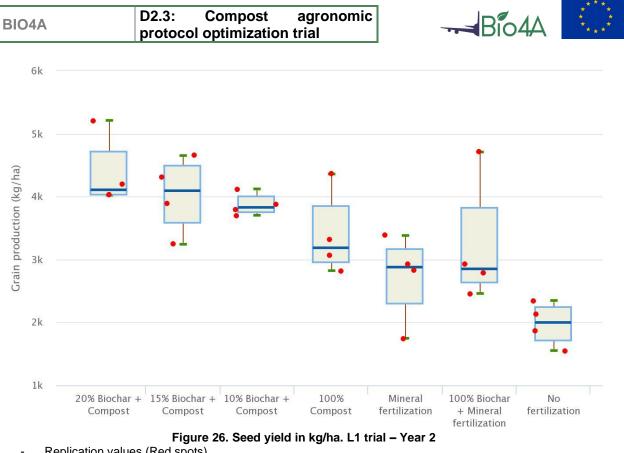


Figure 25. Seed quality characteristics: Moisture and oil content. L1 trial – Year 1.

- Replication values (Red spots)
- Lower to upper quartile (Blue area)
- Median (Dark blue line)
- Minimun to maximun (Segment)

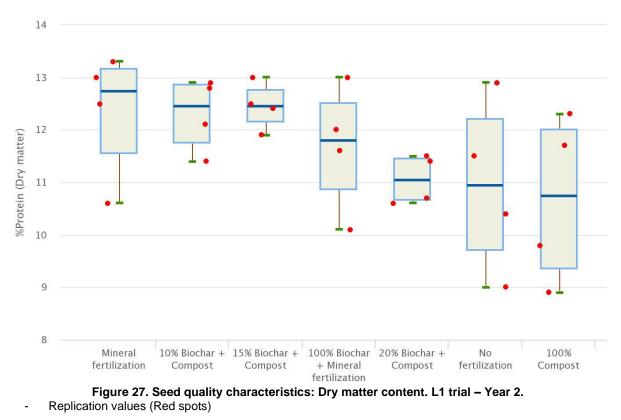
Finally, the oleic acid results have not shown significant differences between treatments (Range of values: 0.67-0,71%).


Year 2 (Barley cultivation)

Cycle duration (days).

No fertilization treatment replicates were ready to be harvested on day 202 of the cycle. The rest of the treatments were not ready at this point and they were harvested 2 weeks later (day 216 of the cycle).

Yield (kg seed/ha)


The impact produced by the addition of compost has been higher than the biochar. However, mixes between biochar and compost treatments have registered the highest yields: 20%, 15% and 10% of biochar respectively.

- Replication values (Red spots) Lower to upper quartile (Blue area)
- _
- Median (Dark blue line) -
- _ Minimun to maximun (Segment)

Seed quality characteristics

Grain protein content usually is indicative of nitrogen availability during the crop cycle. Protein content analyses do not show significant differences between treatments in this trial, although large differences between replicates have been observed.

BIO4A	D2.3:	Compost agronomic	
DIU4A	protocol	optimization	trial

- Lower to upper quartile (Blue area)
- Median (Dark blue line)
- Minimun to maximun (Segment)

Year 3 (Camelina cultivation)

Cycle duration (days)

The cycle duration in this trial was between 182 and 198 days. No significant differences related to the phenology have been observed between treatments.

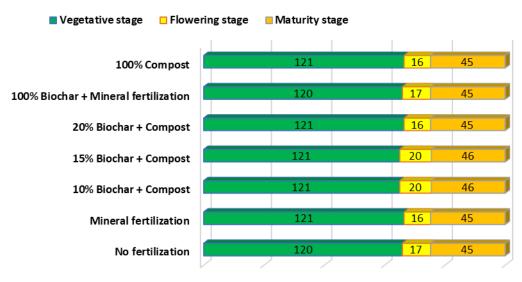
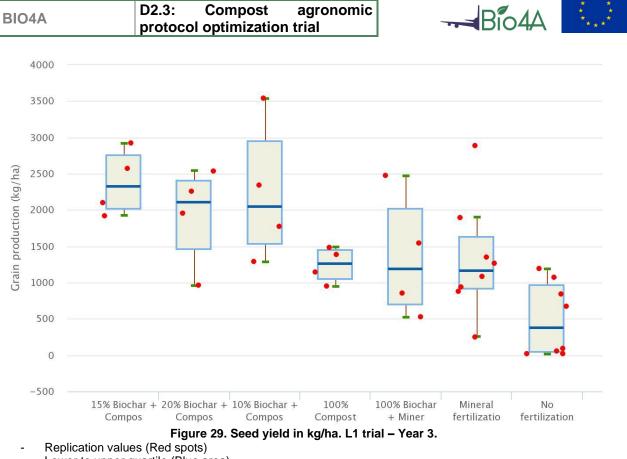
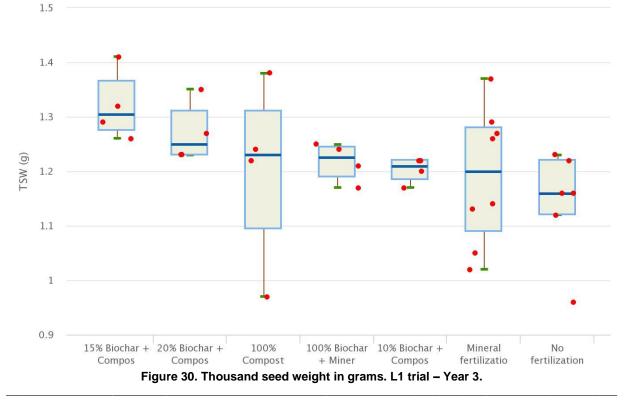



Figure 28. Cycle duration in days. L1 trial – Year 3.

Yield (kg seed/ha)

Results have shown a positive effect of biochar addition in camelina yield. The COMBI mixes with compost and biochar have shown the best performance in this trial, obtaining an increment between 380 and 480%. Mineral fertilization treatments (with and without biochar) and compost treatment (without biochar) have also shown a considerable yield increment compared to the no-fertilization treatment (250-270%), although to a much lesser extent.

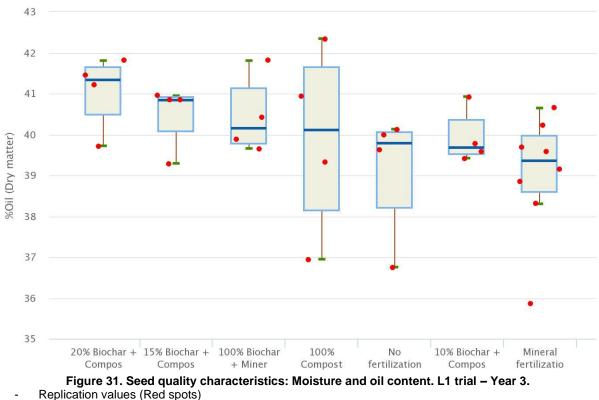

Lower to upper quartile (Blue area)

Median (Dark blue line) -

Minimun to maximun (Segment)

Weight of 1,000 seeds (TSW)

A positive correlation has been observed between seed weight and biochar addition (>6-15% regarding no fertilization treatment). In the same way but in lower measure, this effect has been also observed between seed size and compost fertilization (>4% regarding no fertilization treatment). Mineral fertilization has not shown any effect regarding the seed weight in comparison with no fertilization treatment.


BIO4A	D2.3:	D2.3: Compost agr	agronomic
DIO4A	protoco	ol optimizatio	n trial

- Replication values (Red spots) _
- Lower to upper quartile (Blue area)
- Median (Dark blue line)
- Minimun to maximun (Segment)

Seed quality characteristics

No statistical significant differences have been observed regarding the oil content between the different treatments. However, a positive trend related to the biochar addition and oil content can be observed.

- Lower to upper quartile (Blue area) -
- -Median (Dark blue line)
- Minimun to maximun (Segment) -

5.1.2 L2 – Finca Entresierras (Ciudad Real, Ciudad Real)

Year 1 (Camelina cultivation)

Cycle duration (days)

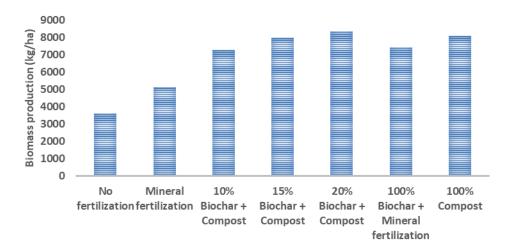
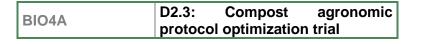
The cycle duration in this trial was 152 days distributed in 82 days of the vegetative stage (cotyledons and rosette), 20 days of flowering and 50 days of maturity. No significant differences have been observed between treatments.

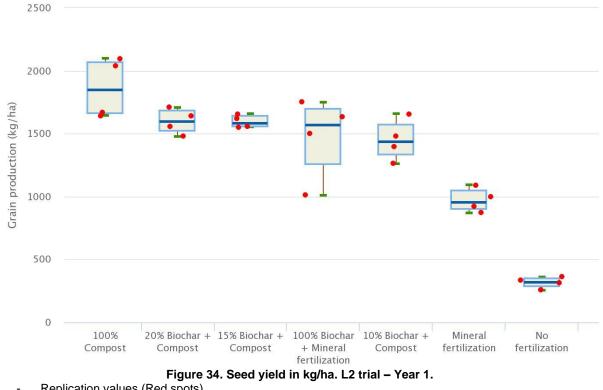
)4A	D2.3: Comp protocol optimi			Bio44	*** ***
	Vegetative Stage	Flowering stage	Maturity	stage	
	100% Compost	78	23	51	
100% Bi	iochar + Mineral f.	83	18	51	
20%1	Biochar + Compost	80	21	51	
15%	Biochar + Compost	80	21	51	
10%	Biochar + Compost	80	21	51	
n	Aineral fertilization	86	20	46	
	No fertilization	88	18	46	

Figure 32. Cycle duration in days. L2 trial – Year 1.

Biomass yield (kg biomass/ha)

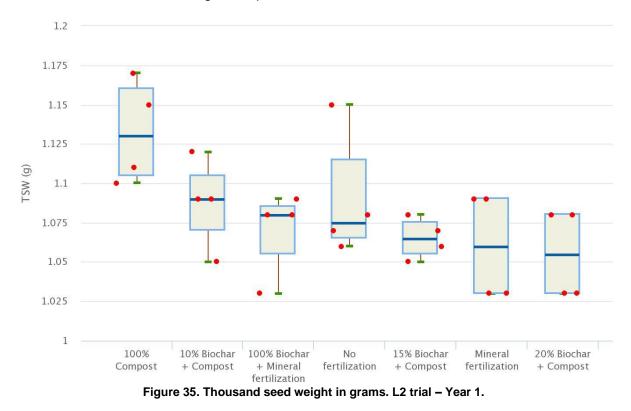
A unique replicate was harvested (by hand) to calculate the biomass production. The addition of Compost and Biochar have both increased biomass production.


Figure 33. Biomass yield in kg/ha. L2 trial – Year 1.

Yield (kg seed/ha)

The treatments with an input of compost have shown a better yield. Additionally, biochar addition has also shown a positive correlation: Mineral fertilization+Biochar treatment has registered an increment higher than 150% than Mineral fertilization treatment (treatments where the biochar effect can be isolated).

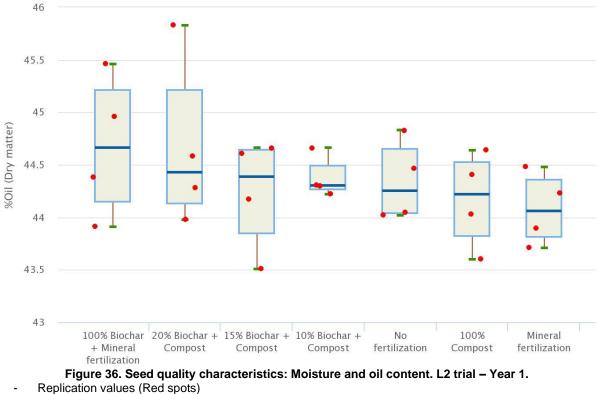


- Replication values (Red spots)Lower to upper quartile (Blue area)
- Lower to upper quartile
 Median (Dark blue line)
- Median (Dark blue line)
 Minimun to maximun (Segment)

Weight of 1,000 seeds

The variety used for this trial has been a medium cycle camelina variety (CCE32),

characterized by a medium to high seed size (1.0-1.4 g per 1000 seeds). The results show an overall low seed weight across treatments, except for the 100% compost treatment, with an increase in thousand seed weight compared to the rest of the treatments.



BIO4A	D2.3:	Compost	agronomic
DIU4A	protocol	optimization	trial

- Replication values (Red spots)
- Lower to upper quartile (Blue area)
- Median (Dark blue line)
- Minimun to maximun (Segment)

<u>Seed quality characteristics</u> The treatments have not shown significant differences in moisture and oil content.

- Lower to upper quartile (Blue area) -
- Median (Dark blue line) -
- Minimun to maximun (Segment)

The oleic acid results have resulted much lower than L1 trial (about 0.35 in L2 trial instead of 0.7 from L1 trial). This is indicative of the better conditions during seed formation in L2. Also, no significant differences have been observed between treatments. It indicates that ambient conditions have been the cause of this effect.

Year 2 (Barley cultivation)

Cycle duration (days)

All treatments from this trial were ready to be harvested on day 201 of the cycle. However, "no-fertilization" and "mineral fertilization" treatments have shown a slower development than the rest of the treatments, reaching the flowering stage some days later. This effect is usually an indicator of lower nutrient availability for the plant.

BIO4A	D2.3:	Compost	agronomic
DIU4A	protocol	optimization	trial

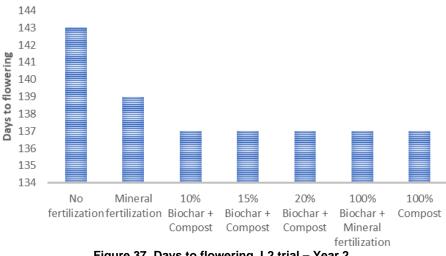
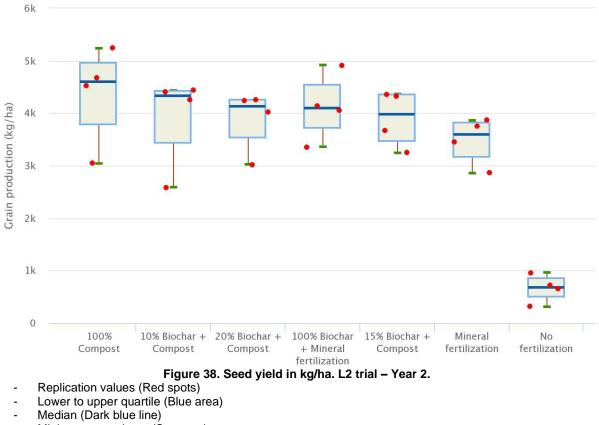
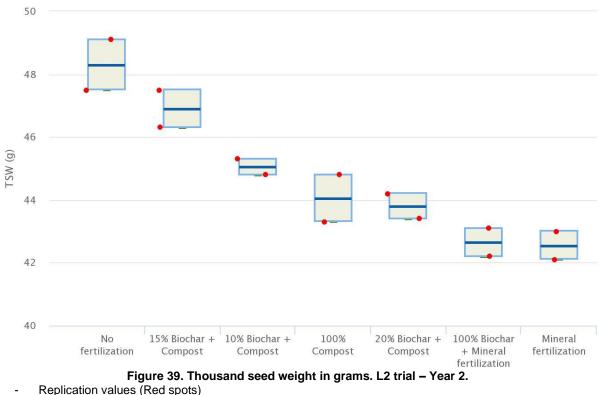



Figure 37. Days to flowering. L2 trial – Year 2.

Yield (kg seed/ha)

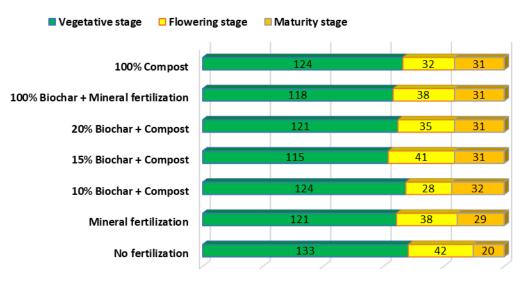
The treatments with an input of compost have shown a better yield, obtaining an increment of 126% (100% compost fertilization) with respect the mineral fertilization. On the other hand, Biochar addition has also shown a positive correlation, although more lightly: Mineral fertilization+Biochar treatment has obtained an increment of 118% of yield in comparison of the Mineral fertilization treatment (treatments where the biochar effect can be isolated).


Minimun to maximun (Segment) _

Weight of 1,000 seeds

BIO4A	D2.3:	Compost	agronomic
DIO4A	protocol	optimization	trial

No fertilization and compost fertilization treatments have registered higher thousand seed weight value than mineral fertilization. This trait has not shown a correlation with yield production.

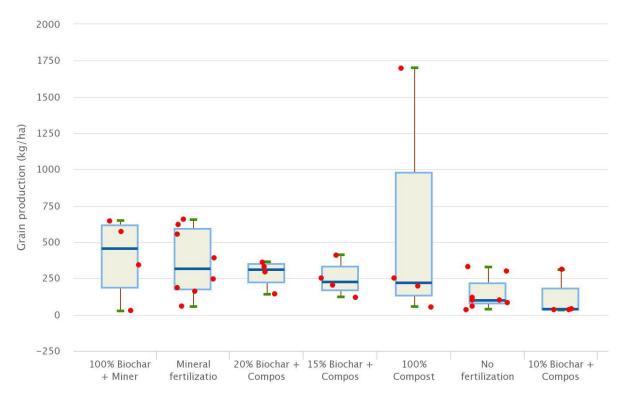


- Lower to upper quartile (Blue area)
- Median (Dark blue line)
- Minimun to maximun (Segment)

Year 3 (Camelina cultivation)

Cycle duration (days)

The cycle duration in this trial was between 184 and 195 days, depending on the treatment. It has been observed that nutrient availability entails a higher flowering precocity and a longer maturity period, while harvest time remains almost unchanged. However, no significant differences have been observed related to biochar addition and mineral/compost fertilization.


BIO4A	D2.3:	Compost	agronomic
DIO4A	protocol	optimization	trial

<u>Yield (kg seed/ha)</u>

Yield results obtained from this trial have shown a high variability (one treatment has collected almost the total seed of the trial). This data has not correlated with the visual observations developed during the year.

Unfortunately, a malfunction in the combine occurred during the harvest of the trials in location L2. After revision of the combine, material accumulation in the combine internal circuit provoked a mixing of the harvest between microplots.

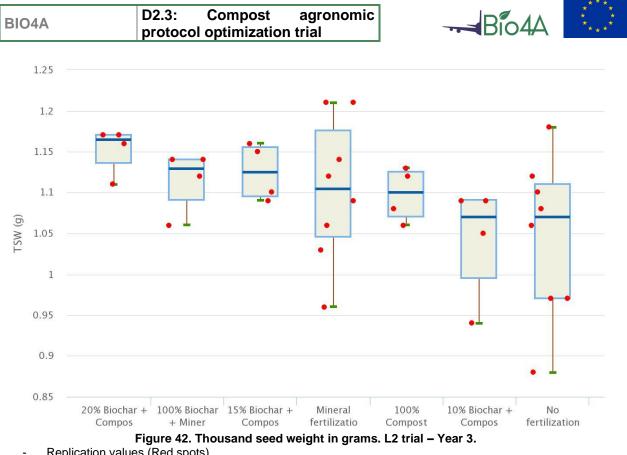
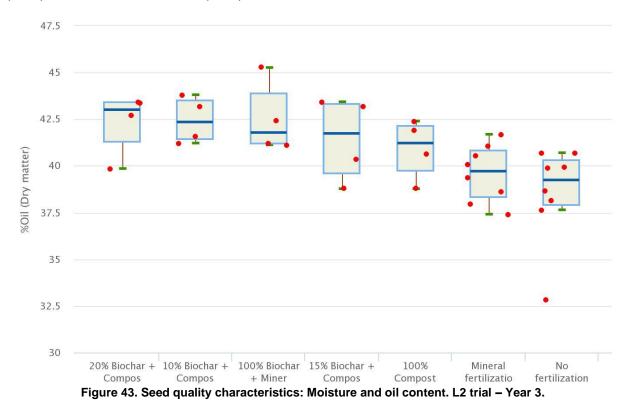


Figure 41. Seed yield in kg/ha. L2 trial – Year 3.

- Replication values (Red spots)
- Lower to upper quartile (Blue area)
 Median (Dark blue line)
- Median (Dark blue line)
 Minimum to maximum (Source)
- Minimun to maximun (Segment)

Weight of 1,000 seeds


As indicated above, a possible mix between treatments during the harvest could have affected the results presented below. Differences between the seed size measures of most of the treatments have not been significant. However, 20%biochar+compost treatment has registered an increment of 11% in comparison with 20%biochar+compost and no fertilization treatments.

- Replication values (Red spots)
- Lower to upper quartile (Blue area)
- Median (Dark blue line) -
- Minimun to maximun (Segment)

Seed quality characteristics

As indicated above, a possible mix between treatments during the harvest could have affected the results presented below. A positive correlation between Biochar addition and oil content has been observed, registering an increment of this parameter between 7 and 10% in comparison to no fertilization treatment. This increment has been lower in compost fertilization (+6%) and mineral fertilization (+3%).

BIO4A	D2.3:	Compost	agronomic
DIU4A	protocol	optimization [•]	trial

- -
- Replication values (Red spots) Lower to upper quartile (Blue area) Median (Dark blue line) Minimun to maximun (Segment) -
- -
- -

6 Discussion

6.1 Effect on plant phenology

Favourable conditions (water and nutrients availability) produce a positive effect on the metabolism of the plant, speeding up the crop development. Phenology results have shown a similar behaviour regarding the days to flowering in these three years of the project. The treatments including organic fertilizer (compost, COMBI) in the background fertilization have shown the fastest development, followed by mineral fertilization treatments. There is no clear evidence of the biochar effect on the plant's phenology.

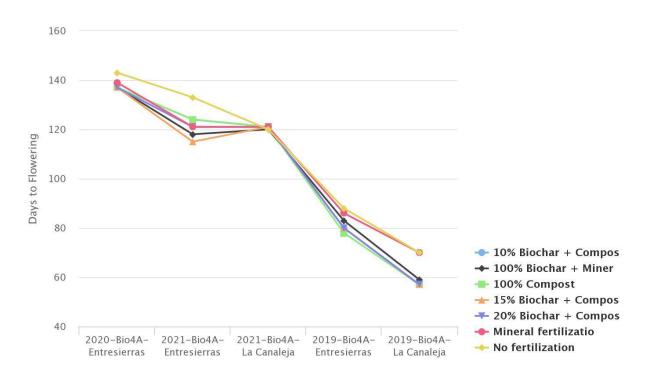


Figure 44. Influence of the treatments on the crop phenology.

6.2 Effect on seed yield

An increment of the water and nutrient availability supposes an increment of seed yield. Production results have registered the same tendency during the three first years of trials:

- No fertilization treatment has obtained the lowest production in all trials (an average of 677 kg/ha).
- The application of mineral fertilization has increased yield production, reaching an average yield of 1491 kg/ha (>120% regarding No fertilization treatment).
- The addition of biochar to the mineral fertilization treatment has shown an increment of 20% in productivity compared with mineral fertilization.
- The best yield results have been observed with the compost fertilization and with the co-composted biochar, with an increment in the production in the range of 29%-37% compared with mineral fertilization.
- Co-composted biochar (COMBI) at 15 and 20 percent levels of biochar w/w resulted in the highest mean yield compared to all treatments (2044 and 2048 kg/ha respectively), increasing the seed yield by 6% in comparison to the 100% compost treatment (1924 kg/ha). COMBI at 10 percentage levels of biochar w/w has shown a similar result to 100% compost treatment (1957 kg/ha).

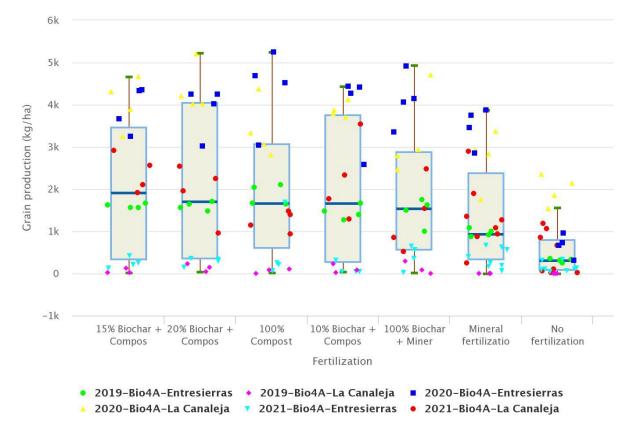
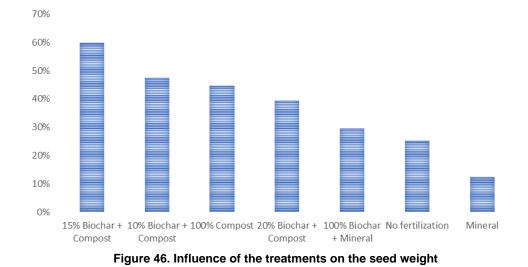


Figure 45. Influence of the treatments on crop productivity

6.3 Effect on seed weight

Seed weight is a trait intimately linked with the genetic of the crop. On the other hand, this parameter can be linked with the fertilization and an increment of the TSW (Thousand seed weight) has been observed when these conditions have been favourable for the plant development.


A study to normalize values has been developed in order to understand the effect of the treatments on the seed weight (2019 L1 and L2, 2020 L2, 2021 L1 and L2):

 $\% N treatment = Average \frac{(TSW treatment - TSW min)}{(TSW max - TSW min)}$

The results of this study are presented below:

BIO4A	D2.3:	Compost	agronomic
DIO4A	protocol	optimization	trial

The main conclusions are:

- Compost application has shown a positive correlation with seed weight.
- Biochar addition has shown a positive effect on seed weight.
- Mineral fertilization has provoked a negative effect on seed weight.

6.4 Effect on seed oil content

Several factors affect in different ways the oil content:

- Nitrogen availability is usually linked with an increment of seed protein content, typically reducing seed oil content.
- Water availability favours the biosynthesis of triacylglycerides, increasing the seed oil content.
- High temperatures during the filling grain process usually reduce the oil content of the seed.

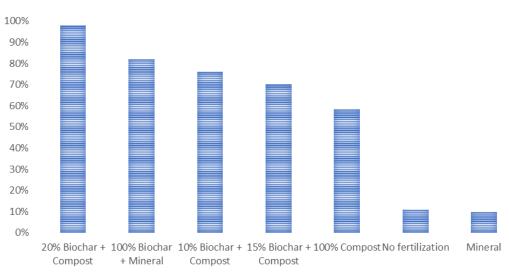

However, the increment of oil production (on a per hectare basis) is usually more linked with seed productivity more than seed oil content. Average results of the different studies where camelina crop was planted are shown below:

Figure 47. Average oil content of the studies where camelina crop was sown.

A study to normalize values has been developed in order to understand the effect of the treatments on the seed oil content (2019 and 2021 - L1 and L2 results; camelina crop):

%Ntreatment = Average $\frac{(\% OILtreatment - \% OILmin)}{(\% OILmax - \% OILmin)}$

The results of this study are presented below:

Figure 48. Influence of the treatments on the seed oil content

The main conclusions are:

- Biochar application has shown a positive correlation with seed oil content.
- Compost fertilization has also provoked an increment in seed oil content.
- Mineral fertilization has registered a negative effect on seed oil content.

BIO4A	D2.3:	Compost	agronomic
DIO4A	protocol	optimization	trial

6.5 Height

The height of a crop is a trait that has been traditionally linked with seed productivity. This parameter has an intimate relation to root development. Results of these three years of study show that the addition of biochar shows a positive correlation with plant height. Compost fertilization has also shown a positive effect related to crop height.

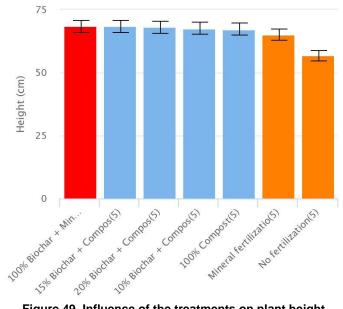


Figure 49. Influence of the treatments on plant height

BIO4A	D2.3:	Compost	agronomic
DIU4A	protoco	ol optimizatio	n trial

7 Annexes

2019 - L1 Results (Camelina crop)

28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	∞	7	6	л	4	ω	2	1	
	100% Compost	100% Compost	100% Compost		100% Bio char + NPK	100% Bio char + NPK	100% Bio char + NPK		20% Biochar + Compost	20% Biochar + Compost	20% Biochar + Compost		15% Biochar + Compost	15% Biochar + Compost	15% Biochar + Compost		10% Biochar + Compost	10% Biochar + Compost	10% Biochar + Compost		NPK	NPK	Mineral fertilization		No fertilization	No fertilization	No fertilization	
07/03/2019	07/03/2019	07/03/2019	07/03/2019	07/03/2019	07/03/2019	07/03/2019	07/03/2019	07/03/2019	07/03/2019	07/03/2019	07/03/2019	07/03/2019	07/03/2019	07/03/2019	07/03/2019	07/03/2019	07/03/2019	07/03/2019	07/03/2019	07/03/2019	07/03/2019	07/03/2019	07/03/2019	N/A	N/A	N/A	N/A	
14/03/2019	14/03/2019	14/03/2019	14/03/2019	14/03/2019	14/03/2019	14/03/2019	14/03/2019	14/03/2019	14/03/2019	14/03/2019	14/03/2019	14/03/2019	14/03/2019	14/03/2019	14/03/2019	14/03/2019	14/03/2019	14/03/2019	14/03/2019	14/03/2019	14/03/2019	14/03/2019	14/03/2019	14/03/2019	14/03/2019	14/03/2019	14/03/2019	
A/N	10/05/2019	10/05/2019	10/05/2019	N/A	12/05/2019	12/05/2019	12/05/2019	N/A	10/05/2019	10/05/2019	10/05/2019	N/A	10/05/2019	10/05/2019	10/05/2019	N/A	10/05/2019	10/05/2019	10/05/2019	N/A	23/05/2019	23/05/2019	23/05/2019	N/A	23/05/2019	23/05/2019	23/05/2019	
N/A	31/05/2019	31/05/2019	31/05/2019	N/A	31/05/2019	31/05/2019	31/05/2019	N/A	30/05/2019	30/05/2019	30/05/2019	N/A	31/05/2019	31/05/2019	31/05/2019	N/A	31/05/2019	31/05/2019	31/05/2019	N/A	07/06/2019	07/06/2019	07/06/2019	N/A	05/06/2019	05/06/2019	05/06/2019	
N/A	21	21	21	N/A	19	19	19	N/A	20	20	20	N/A	21	21	21	N/A	21	21	21	N/A	15	15	15	N/A	13	13	13	
N/A	21/06/2019	21/06/2019	21/06/2019	N/A	21/06/2019	21/06/2019	21/06/2019	N/A	21/06/2019	21/06/2019	21/06/2019	N/A	21/06/2019	21/06/2019	21/06/2019	N/A	21/06/2019	21/06/2019	21/06/2019	N/A	21/06/2019	21/06/2019	21/06/2019	N/A	21/06/2019	21/06/2019	21/06/2019	
0.28	0.28	0.28	0.28	0.28	0.28	0.28	0.28	0.28	0.28	0.28	0.28	0.28	0.28	0.28	0.28	0.28	0.28	0.28	0.28	0.28	0.28	0.28	0.28	0.28	0.28	0.28	0.28	
A/N	61	90	46	N/A	113	06	49	N/A	97	81	79	N/A	86	77	82	N/A	71	75	63	N/A	33	24	44	N/A	22	20	21	
N/A	2178.6	3214.3	1642.9	N/A	4035.7	3214.3	1750.0	N/A	3464.3	2892.9	2821.4	N/A	3500.0	2750.0	2928.6	N/A	2535.7	2678.6	2250.0	N/A	1178.6	857.1	1571.4	N/A	785.7	714.3	750.0	
N/A	2.596	2.963	0.192	N/A	8.243	2.559	0.177	N/A	4.146	6.338	0.929	N/A	3.658	0.508	0.337	N/A	2.267	6.166	0.593	N/A	0	0.039	0.02	N/A	0	0	0.076	
A/N	4.3%	3.3%	0.4%	N/A	7.3%	2.8%	0.4%	N/A	4.3%	7.8%	1.2%	N/A	3.7%	0.7%	0.4%	N/A	3.2%	8.2%	0.9%	N/A	0.0%	0.2%	0.0%	N/A	0.0%	0.0%	0.4%	
N/A	92.7	105.8	6.9	N/A	294.4	91.4	6.3	N/A	148.1	226.4	33.2	N/A	130.6	18.1	12.0	N/A	81.0	220.2	21.2	N/A	0.0	1.4	0.7	N/A	0.0	0.0	2.7	
N/A	6.89	7.01	7.06	N/A	7.04	6.96	6.84	N/A	6.99	6.80	6.91	N/A	6.90	6.95	7.03	N/A	6.85	6.83	7.12	N/A	N/A	N/A	N/A	N/A	N/A	N/A	7.21	
N/A	28.91	29.42	31.51	N/A	29.81	29.34	30.79	N/A	29.19	28.92	30.54	N/A	29.73	31.34	28.17	N/A	30.24	29.26	30.15	N/A	N/A	N/A	N/A	N/A	N/A	N/A	32.90	
N/A	38.81	38.15	35.86	N/A	37.25	38.26	35.46	N/A	38.08	39.05	37.19	N/A	37.89	35.60	39.14	N/A	37.17	38.49	37.61	N/A	N/A	N/A	N/A	N/A	N/A	N/A	33.20	
N/A	0.745	0.732	N/A	N/A	0.685	0.796	N/A	N/A	0.696	0.818	0.696	N/A	0.740	N/A	N/A	N/A	0.721	0.802	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	10

Trials were irrigated after seeding to assure an adequate germination

Note.

BIO4A	D2.3:	Compost	agronomic
DIO4A	protocol	optimization	trial

2019 – L2 Results (Camelina crop)

28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	00	7	6	u,	4	ω	2		Plot
100% Compost	100% Compost	100% Compost	100% Compost	100% Biochar + Mineral fertilization	20% Biochar + Compost	15% Biochar + Compost	10% Biochar + Compost	Mineral fertilization	Mineral fertilization	Mineral fertilization	Mineral fertilization	No fertilization	No fertilization	No fertilization	No fertilization	Treatment												
4	ω	2	-	4	ω	2	1	4	ω	2	-	4	ω	2	-	4	ω	2	-	4	ω	2	-	4	ω	2	⊢	Rep
11/01/2018	11/01/2018	11/01/2018	11/01/2018	11/01/2018	11/01/2018	11/01/2018	11/01/2018	11/01/2018	11/01/2018	11/01/2018	11/01/2018	11/01/2018	11/01/2018	11/01/2018	11/01/2018	11/01/2018	11/01/2018	11/01/2018	11/01/2018	11/01/2018	11/01/2018	11/01/2018	11/01/2018	N/A	N/A	N/A	N/A	Date of backgro und fertilizatio =
14/01/2019	14/01/2019	14/01/2019	14/01/2019	14/01/2019	14/01/2019	14/01/2019	14/01/2019	14/01/2019	14/01/2019	14/01/2019	14/01/2019	14/01/2019	14/01/2019	14/01/2019	14/01/2019	14/01/2019	14/01/2019	14/01/2019	14/01/2019	14/01/2019	14/01/2019	14/01/2019	14/01/2019	14/01/2019	14/01/2019	14/01/2019	14/01/2019	Seeding date
02/04/2019	02/04/2019	02/04/2019	02/04/2019	07/04/2019	07/04/2019	07/04/2019	07/04/2019	04/04/2019	04/04/2019	04/04/2019	04/04/2019	04/04/2019	04/04/2019	04/04/2019	04/04/2019	04/04/2019	04/04/2019	04/04/2019	04/04/2019	10/04/2019	10/04/2019	10/04/2019	10/04/2019	12/04/2019	12/04/2019	12/04/2019	12/04/2019	Flowering date
25/04/2019	25/04/2019	25/04/2019	25/04/2019	25/04/2019	25/04/2019	25/04/2019	25/04/2019	25/04/2019	25/04/2019	25/04/2019	25/04/2019	25/04/2019	25/04/2019	25/04/2019	25/04/2019	25/04/2019	25/04/2019	25/04/2019	25/04/2019	30/04/2019	30/04/2019	30/04/2019	30/04/2019	30/04/2019	30/04/2019	30/04/2019	30/04/2019	End of flowering
23	23	23	23	18	18	18	18	21	21	21	21	21	21	21	21	21	21	21	21	20	20	8	00	18	18	18	18	Days of flowering
15/06/2019	15/06/2019	15/06/2019	15/06/2019	15/06/2019	15/06/2019	15/06/2019	15/06/2019	15/06/2019	15/06/2019	15/06/2019	15/06/2019	15/06/2019	15/06/2019	15/06/2019	15/06/2019	15/06/2019	15/06/2019	15/06/2019	15/06/2019	15/06/2019	15/06/2019	15/06/2019	15/06/2019	15/06/2019	15/06/2019	15/06/2019	15/06/2019	Harvest date
84	84	84	84	84	84	84	84	84	84	84	84	84	84	84	84	84	84	84	84	82	82	82	82	76	76	76	76	Height (cm)
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Lodging
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Shattering -
N/A	810	N/A	N/A	N/A	741	N/A	N/A	N/A	835	N/A	N/A	N/A	796	N/A	N/A	N/A	728	N/A	N/A	N/A	513	N/A	N/A	N/A	360	N/A	N/A	Biomass (sample)
N/A	8100	N/A	N/A	N/A	7410	N/A	N/A	N/A	8350	N/A	N/A	N/A	7960	N/A	N/A	N/A	7280	N/A	N/A	N/A	5130	N/A	N/A	N/A	3600	N/A	N/A	Biomass yield (kg/ha) =
N/A	238	N/A	N/A	N/A	220	N/A	N/A	N/A	241	N/A	N/A	N/A	234	N/A	N/A	N/A	196	N/A	N/A	N/A	127	N/A	N/A	N/A	8	N/A	N/A	Seed sample (8)
N/A	2380	N/A	N/A	N/A	2200	N/A	N/A	N/A	2410	N/A	N/A	N/A	2340	N/A	N/A	N/A	1960	N/A	N/A	N/A	1270	N/A	N/A	N/A	580	N/A	N/A	Seed Yield (Biomass sample) -
N/A	29.4%	N/A	N/A	N/A	29.7%	N/A	N/A	N/A	28.9%	N/A	N/A	N/A	29.4%	N/A	N/A	N/A	26.9%	N/A	N/A	N/A	24.8%	N/A	N/A	N/A	16.1%	N/A	N/A	%Seed/blo mass = Y
2036.4	1670.8	2095.2	1642.3	1009.2	1751.6	1502.3	1634.9	1477.7	1643.8	1556.2	1709.2	1558.8	1657.3	1616.9	1553.2	1261.5	1394.5	1657.3	1478.9	919.1	997.1	1091.4	869.5	360.4	336.8	256.0	312.1	Yield (kg/ha)
6.01	5.96	5.87	6.19	5.78	5.83	5.7	5.91	5.81	5.88	5.71	5.92	6.05	5.87	5.9	6	5.84	5.39	5.81	5.92	5.88	5.84	5.8	6.15	6.99	6.11	6.45	6.17	%Moisture +
24.8	25.88	25.42	25.35	24.8	25.63	23.9	25.26	25.22	25.39	23.84	24.54	24.48	26.13	25.43	24.73	24.9	25.77	24.99	25.18	24.93	25.82	25.54	25.52	24.46	25.1	24.7	24.12	%Protein
41.96	4	41.8	41.3	42.36	41.35	42.87	41.76	41.71	41.39	43.21	41.94	41.91	40.96	41.56	41.98	42.05	41.84	41.74	41.68	41.86	41.16	41.66	41.2	40.97	41.75	41.18	42.06	*
1.15	1.113	1.173	1.103	1.085	1.076	1.094	1.026	1.032	1.078	1.081	1.034	1.067	1.08	1.053	1.058	1.115	1.092	1.093	1.054	1.09	1.027	1.035	1.092	1.149	1.079	1.072	1.065	TSW (g)

----Bio4A

BIO4A	D2.3:	Compost	agronomic
DIO4A	protoco	l optimizatior	n trial

2020 - L1 Results (Barley crop)

Replicate Date Sowing rate (Fg/ha) Date 1 08/11/2019 180 N/A 1 08/11/2019 180 07/11/2019 1 1 08/11/2019 180 N/A 1	Type (kg/ha) 8-24-8 250 8-24-8 250 8-24-8 250 8-24-8 250 8-24-8 250 8-24-8 250 8-24-8 250 8-24-8 250 8-24-8 250	Type (Fg/ha) Date 8-24-8 250 05/03/2020 8-24-8 250 05/03/2020 8-24-8 250 05/03/2020 8-24-8 250 05/03/2020 8-24-8 250 05/03/2020 8-24-8 250 05/03/2020 8-24-8 250 05/03/2020 8-24-8 250 05/03/2020 8-24-8 250 05/03/2020	Type (Fig/ho) Date 8-24-8 250 05/03/2020 8-24-8 250 05/03/2020 8-24-8 250 05/03/2020 8-24-8 250 05/03/2020 8-24-8 250 05/03/2020 8-24-8 250 05/03/2020 8-24-8 250 05/03/2020 8-24-8 250 05/03/2020 8-24-8 250 05/03/2020 8-24-8 250 05/03/2020	type (kg/ha) base type (kg/ha) (kg/ha) 8-24-8 250 05/03/2020 NAC 27% 180 9-05/03/2020 NAC 27% 180 180 9-05/03/2020 NAC 27% 180 180 9-05/03/2020 NAC 27% 180 180	type (ng/ha) Date type (ng/ha) Date Type (ng/ha) Date Date n N	type (kg/ha) Dave Type Dave Type Dave Type Dave Type Dave Type Dave Type Dave Dave <thdave< th=""> Dave Dave <t< th=""></t<></thdave<>
	ທ ທ ທ ທ ທ ທ ທ ທ ທ ທ		Type (kg/ha) NAC 27% 180	Type (kg/ha) Date Type Image: Im	Type (kg/ha) Oate Type Dote Dote <thdote< th=""> Dote Dote <</thdote<>	Type (kg/ha) Date Type Date Date <thdate< th=""> Date Date <</thdate<>

2020 – L2 Results (Barley crop)

	Treatment	-	Sowing		Background fertilization			Dressing fertilization			Herbicides	_		Harvest	
Code	Treatment Replicate	ate Date	Sowing rate (kg/ha)	Date	Туре	(kg/ha)	Date	Туре	(kg/ha)	Date	Type Dose	se Date		Days of cycle	Height (cm) (kg/ha)
No fertilization-1	No fertilization	1 29/1	29/11/2019 375 seeds/m2/Barley Variety Sfera							18/02/2020	18/02/2020 granstar super 50 sx 45 g/ha		17/06/2020	201	660
Mineral fertilization-1	Mineral fertilization	1 29/1	29/11/2019 375 seeds/m2/Barley Variety Sfera	29/11/2019	29/11/2019 N-P-K (Mg-S): 10-12-20(2-25)	150 kg/ha	14/02/20:	14/02/2020 ABONO D-CODER TOP 20N-6P-6K-2Mg-20S	230 kg/ha	18/02/2020	18/02/2020 granstar super 50 sx 45 g/ha	-	17/06/2020	201	3750
10% Biochar + Compost-1	10% Biochar + Compost	1 29/1	29/11/2019 375 seeds/m2/Barley Variety Sfera				14/02/20:	14/02/2020 ABONO D-CODER TOP 20N-6P-6K-2Mg-20S	230 kg/ha	18/02/2020	18/02/2020 granstar super 50 sx 45 g	45 g/ha 1	17/06/2020	201	4262
15% Biochar + Compost-1	15% Biochar + Compost	1 29/1	29/11/2019 375 seeds/m2/Barley Variety Sfera				14/02/20:	14/02/2020 ABONO D-CODER TOP 20N-6P-6K-2Mg-20S	230 kg/ha	18/02/2020	18/02/2020 granstar super 50 sx 45 §	45 g/ha 1	17/06/2020	201	3663
20% Biochar + Compost-1	20% Biochar + Compost	1 29/1	29/11/2019 375 seeds/m2/Barley Variety Sfera				14/02/20:	14/02/2020 ABONO D-CODER TOP 20N-6P-6K-2Mg-20S	230 kg/ha	18/02/2020	18/02/2020 granstar super 50 sx 45 g/ha		17/06/2020	201	4028
100% Biochar + Mineral fertilization-1	100% Biochar + Mineral fertilization	1 29/1	29/11/2019 375 seeds/m2/Barley Variety Sfera	29/11/2019	29/11/2019 N-P-K (Mg-S): 10-12-20(2-25)	150 kg/ha	14/02/20:	14/02/2020 ABONO D-CODER TOP 20N-6P-6K-2Mg-20S	230 kg/ha	18/02/2020	18/02/2020 granstar super 50 sx 45 g/ha		17/06/2020	201	4063
100% Compost-1	100% Compost	1 29/1	29/11/2019 375 seeds/m2/Barley Variety Sfera				14/02/20:	14/02/2020 ABONO D-CODER TOP 20N-6P-6K-2Mg-20S	230 kg/ha	18/02/2020	18/02/2020 granstar super 50 sx 45 g/ha	-	17/06/2020	201	4679
No fertilization-2	No fertilization	2 29/1	29/11/2019 375 seeds/m2/Barley Variety Sfera							18/02/2020	18/02/2020 granstar super 50 sx 45 į	45 g/ha 1	17/06/2020	201	50 317
Mineral fertilization-2	Mineral fertilization	1/6Z Z	29/11/2019 375 seeds/m2/Barley Variety Sfera	29/11/2019	29/11/2019 N-P-K (Mg-S): 10-12-20(2-25)	150 kg/ha	14/02/20:	14/02/2020 ABONO D-CODER TOP 20N-6P-6K-2Mg-20S	230 kg/ha	18/02/2020	18/02/2020 granstar super 50 sx 45 į	45 g/ha 1	17/06/2020	201	57 3450
10% Biochar + Compost-2	10% Biochar + Compost	1/6Z Z	29/11/2019 375 seeds/m2/Barley Variety Sfera				14/02/20:	14/02/2020 ABONO D-CODER TOP 20N-6P-6K-2Mg-20S	230 kg/ha	18/02/2020	18/02/2020 granstar super 50 sx 45 g/ha		17/06/2020	201	66 4408
15% Biochar + Compost-2	15% Biochar + Compost	1/6Z Z	29/11/2019 375 seeds/m2/Barley Variety Sfera				14/02/20:	14/02/2020 ABONO D-CODER TOP 20N-6P-6K-2Mg-20S	230 kg/ha	18/02/2020	18/02/2020 granstar super 50 sx 45 į	45 g/ha 1	17/06/2020	201	60 4358
20% Biochar + Compost-2	20% Biochar + Compost	2 29/1	29/11/2019 375 seeds/m2/Barley Variety Sfera				14/02/20:	14/02/2020 ABONO D-CODER TOP 20N-6P-6K-2Mg-20S	230 kg/ha	_	18/02/2020 granstar super 50 sx 45 į	45 g/ha 1	17/06/2020	201	62 4242
100% Biochar + Mineral fertilization-2	100% Biochar + Mineral fertilization	2 29/1	29/11/2019 375 seeds/m2/Barley Variety Sfera	29/11/2019	29/11/2019 N-P-K (Mg-S): 10-12-20(2-25)	150 kg/ha	14/02/20:	14/02/2020 ABONO D-CODER TOP 20N-6P-6K-2Mg-20S	230 kg/ha	18/02/2020	18/02/2020 granstar super 50 sx 45 į	45 g/ha 1	17/06/2020	201	67 4142
100% Compost-2	100% Compost	2 29/1	29/11/2019 375 seeds/m2/Barley Variety Sfera				14/02/20:	14/02/2020 ABONO D-CODER TOP 20N-6P-6K-2Mg-20S	230 kg/ha	18/02/2020	18/02/2020 granstar super 50 sx 45 į	45 g/ha 1	17/06/2020	201	70 4525
No fertilization-3	No fertilization	3 29/1	29/11/2019 375 seeds/ m2/Barley Variety Sfera							18/02/2020	18/02/2020 granstar super 50 sx 45 g/ha		17/06/2020	201	725
Mineral fertilization-3	Mineral fertilization	3 29/1	29/11/2019 375 seeds/m2/Barley Variety Sfera	29/11/2019	29/11/2019 N-P-K (Mg-S): 10-12-20(2-25)	150 kg/ha	14/02/20:	14/02/2020 ABONO D-CODER TOP 20N-6P-6K-2Mg-20S	230 kg/ha	18/02/2020	18/02/2020 granstar super 50 sx 45 į	45 g/ha 1	17/06/2020	201	3867
10% Biochar + Compost-3	10% Biochar + Compost	3 29/1	29/11/2019 375 seeds/m2/Barley Variety Sfera				14/02/20:	14/02/2020 ABONO D-CODER TOP 20N-6P-6K-2Mg-20S	230 kg/ha		18/02/2020 granstar super 50 sx 45 (45 g/ha 1	17/06/2020	201	4433
15% Biochar + Compost-3	15% Biochar + Compost	3 29/1	29/11/2019 375 seeds/m2/Barley Variety Sfera				14/02/20:	14/02/2020 ABONO D-CODER TOP 20N-6P-6K-2Mg-20S	230 kg/ha	18/02/2020	18/02/2020 granstar super 50 sx 45 (45 g/ha 1	17/06/2020	201	4325
20% Biochar + Compost-3	20% Biochar + Compost	3 29/1	29/11/2019 375 seeds/ m2/Barley Variety Sfera				14/02/20:	14/02/2020 ABONO D-CODER TOP 20N-6P-6K-2Mg-20S	230 kg/ha	18/02/2020	18/02/2020 granstar super 50 sx 45 g		17/06/2020	201	4250
100% Biochar + Mineral fertilization-3	100% Biochar + Mineral fertilization	3 29/1	29/11/2019 375 seeds/ m2/Barley Variety Sfera	29/11/2019	N-P-K (Mg-S): 10-12-20(2-25)	150 kg/ha	14/02/20:	14/02/2020 ABONO D-CODER TOP 20N-6P-6K-2Mg-20S	230 kg/ha	18/02/2020	18/02/2020 granstar super 50 sx 45 g/ha		17/06/2020	201	4917
100% Compost-3	100% Compost	3 29/1	29/11/2019 375 seeds/m2/Barley Variety Sfera				14/02/20:	14/02/2020 ABONO D-CODER TOP 20N-6P-6K-2Mg-20S	230 kg/ha	18/02/2020	18/02/2020 granstar super 50 sx 45 g/ha		17/06/2020	201	5242
No fertilization-4	No fertilization	4 29/1	29/11/2019 375 seeds/m2/Barley Variety Sfera							18/02/2020	18/02/2020 granstar super 50 sx 45 į	45 g/ha 1	17/06/2020	201	961
Mineral fertilization-4	Mineral fertilization	4 29/1	29/11/2019 375 seeds/m2/Barley Variety Sfera	29/11/2019	29/11/2019 N-P-K (Mg-S): 10-12-20(2-25)	150 kg/ha	14/02/20:	14/02/2020 ABONO D-CODER TOP 20N-6P-6K-2Mg-20S	230 kg/ha	18/02/2020	18/02/2020 granstar super 50 sx 45 g/ha		17/06/2020	201	2863
10% Biochar + Compost-4	10% Biochar + Compost	4 29/1	29/11/2019 375 seeds/m2/Barley Variety Sfera				14/02/20:	14/02/2020 ABONO D-CODER TOP 20N-6P-6K-2Mg-20S	230 kg/ha	_	18/02/2020 granstar super 50 sx 45 į	45 g/ha 1	17/06/2020	201	2588
15% Biochar + Compost-4	15% Biochar + Compost	4 29/1	29/11/2019 375 seeds/ m2/Barley Variety Sfera				14/02/20:	14/02/2020 ABONO D-CODER TOP 20N-6P-6K-2Mg-20S	230 kg/ha	18/02/2020	18/02/2020 granstar super 50 sx 45 į	45 g/ha 1	17/06/2020	201	3245
20% Biochar + Compost-4	20% Biochar + Compost	4 29/1	29/11/2019 375 seeds/ m2/Barley Variety Sfera				14/02/20:	14/02/2020 ABONO D-CODER TOP 20N-6P-6K-2Mg-20S	230 kg/ha	18/02/2020	18/02/2020 granstar super 50 sx 45 g/ha		17/06/2020	201	3020
100% Biochar + Mineral fertilization-4	100% Biochar + Mineral fertilization	4 29/1	29/11/2019 375 seeds/m2/Barley Variety Sfera	29/11/2019	29/11/2019 N-P-K (Mg-S): 10-12-20(2-25)	150 kg/ha	14/02/20:	14/02/2020 ABONO D-CODER TOP 20N-6P-6K-2Mg-20S	230 kg/ha	18/02/2020	18/02/2020 granstar super 50 sx 45 g	45 g/ha 1	17/06/2020	201	3353
100% Compost-4	100% Compost	4 29/1	29/11/2019 375 seeds/m2/Barley Variety Sfera				14/02/20:	14/02/2020 ABONO D-CODER TOP 20N-6P-6K-2Mg-20S	230 kg/ha	18/02/2020	18/02/2020 granstar super 50 sx 45 (45 g/ha 1	17/06/2020	201	3049

2021 – L1 Results (Camelina crop)

Plot	Treatment	Rep	Variety	Date of background fertilization	Seeding date	Flowering date	End of flowering	Days of flowering	Harvest date	Lodging	Shattering
1	No fertilization	1	v5	N/A	09/12/2020	09/04/2021	25/04/2021	16	09/06/2021		0
2	No fertilization	2	v5	N/A	09/12/2020	09/04/2021	25/04/2021	16	09/06/2021		0
3	No fertilization No	3	Control	N/A	09/12/2020	09/04/2021	25/04/2021	16	09/06/2021		0
4	fertilization	4	Control	N/A	09/12/2020	09/04/2021	25/04/2021	16	09/06/2021		0
5	NPK	1	v5	19/11/2019	09/12/2020	09/04/2021	25/04/2021	16	09/06/2021	Medium	0
6	NPK	2	v5	19/11/2019	09/12/2020	09/04/2021	25/04/2021	16	09/06/2021	Medium	0
7 8	NPK NPK	3 4	Control Control	19/11/2019 19/11/2019	09/12/2020	09/04/2021	25/04/2021 25/04/2021	16 16	09/06/2021		0
8	10% Biochar	4	Control	19/11/2019	03/12/2020	03/04/2021	23/04/2021	10	09/00/2021		0
9	+ Compost 10% Biochar	1	v5	N/A	09/12/2020	09/04/2021	25/04/2021	16	09/06/2021		0
10	+ Compost 10% Biochar	2	v5	N/A	09/12/2020	09/04/2021	25/04/2021	16	09/06/2021		0
11	+ Compost 10% Biochar	3	Control	N/A	09/12/2020	09/04/2021	25/04/2021	16	09/06/2021	Medium	0
12	+ Compost 15% Biochar	4	Control	N/A	09/12/2020	09/04/2021	09/05/2021	30	25/06/2021	Medium	0
13	+ Compost 15% Biochar	1	v5	N/A	09/12/2020	09/04/2021	25/04/2021	16	09/06/2021	Medium	0
14	+ Compost 15% Biochar	2	v5	N/A	09/12/2020	09/04/2021	25/04/2021	16	09/06/2021		0
15	+ Compost	3	Control	N/A	09/12/2020	09/04/2021	09/05/2021	30	25/06/2021		0
16	15% Biochar + Compost	4	Control	N/A	09/12/2020	09/04/2021	25/04/2021	16	09/06/2021	Medium	0
17	20% Biochar + Compost	1	v5	N/A	09/12/2020	09/04/2021	25/04/2021	16	09/06/2021	Medium	0
18	20% Biochar + Compost	2	v5	N/A	09/12/2020	09/04/2021	25/04/2021	16	09/06/2021	Medium	0
19	20% Biochar + Compost	3	Control	N/A	09/12/2020	09/04/2021	25/04/2021	16	09/06/2021		0
20	20% Biochar + Compost	4	Control	N/A	09/12/2020	09/04/2021	25/04/2021	16	09/06/2021		0
21	100% Biochar + NPK	1	v5	19/11/2019	09/12/2020	09/04/2021	25/04/2021	16	09/06/2021		0
22	100% Biochar + NPK	2	v5	19/11/2019	09/12/2020	05/04/2021	25/04/2021	20	09/06/2021		0
23	100% Biochar + NPK	3	Control	19/11/2019	09/12/2020	09/04/2021	25/04/2021	16	09/06/2021	Medium	0
24	100% Biochar + NPK	4	Control	19/11/2019	09/12/2020	09/04/2021	25/04/2021	16	09/06/2021	Medium	0
25	100% Compost	1	v5	N/A	09/12/2020	09/04/2021	25/04/2021	16	09/06/2021		0
26	100% Compost	2	v5	N/A	09/12/2020	09/04/2021	25/04/2021	16	09/06/2021		0
27	100% Compost	3	Control	N/A	09/12/2020	09/04/2021	25/04/2021	16	09/06/2021		0
28	100% Compost	4	Control	N/A	09/12/2020	09/04/2021	25/04/2021	16	09/06/2021		0
29	No fertilization	5	v5	N/A	09/12/2020	09/04/2021	25/04/2021	16	09/06/2021		0
30	No fertilization	6	v5	N/A	09/12/2020	05/04/2021	25/04/2021	20	09/06/2021		0
31	No fertilization	7	Control	N/A	09/12/2020	09/04/2021	25/04/2021	16	09/06/2021		0
32	No fertilization	8	Control	N/A	09/12/2020	05/04/2021	25/04/2021	20	09/06/2021		0
33	NPK	5	v5	19/11/2019	09/12/2020	09/04/2021	25/04/2021	16	09/06/2021		0
34	NPK	6	v5	19/11/2019	09/12/2020	09/04/2021	25/04/2021	16	09/06/2021		0
35 36	NPK NPK	7 8	Control Control	19/11/2019 19/11/2019	09/12/2020 09/12/2020	09/04/2021 09/04/2021	25/04/2021 25/04/2021	16 16	09/06/2021	Medium Medium	0

BIO4A	D2.3:	Compost	agronomic
DIU4A	protocol	optimization	trial

Variety	Treatment	Sample	Grain product Mo	oisture%	%Protein (Dry	%Oil (Dry mat	TSW (g)
V5	No fertilization	1A	5.1			/ • • • (- · / · · · •	(8)
V5	No fertilization	1B	17.8				
V5	No fertilization	2A	243.2	5.03	24.59	41.32	1.108
V5	No fertilization	2B	96.2				1.159
Control	No fertilization	3A	83.4				1.119
Control	No fertilization	3B	19.1				
Control	No fertilization	4A	1.5				0.004
Control V5	No fertilization NPK	4B 8A	61.3 1389.1	5.06	25.23	39.47	0.964
V5 V5	NPK	8A 8B	1389.1	5.06	25.23	39.47	1.101
V5	NPK	7A	2776	5.22	20.04	41.04	1.149
V5	NPK	7B	2888.5	5.5	25.11	40.23	1.049
Control	NPK	6A	2954.4	5.42	24.55	41.1	1.199
Control	NPK	6B	1268.9	5.29	24.45	40.65	1.275
Control	NPK	5A	620.7	5.26	25.81	38.84	1.044
Control	NPK	5B	254.2	5.3	26.68	35.87	1.022
V5	10% Biochar + Compost	9A	1024.7	5.26	25.4	41.09	1.205
V5	10% Biochar + Compost	9B	1286.9	5.23	26.26	40.92	1.166
V5	10% Biochar + Compost	10A	2206.4	4.86	26.89	40.7	1.26
V5 Control	10% Biochar + Compost	10B	2343.2	5	26.12	39.59	1.215
Control	10% Biochar + Compost	11A	3611.4	4.59	27.77	39.7	1.263
Control Control	10% Biochar + Compost 10% Biochar + Compost	11B 12A	3535.8 1827.9	4.75 4.49	27.54 25.24	39.77 40.77	1.2 1.228
Control	10% Biochar + Compost	12A 12B	1771.7	4.49	25.24	39.41	1.228
V5	15% Biochar + Compost	12B 16A	1936	3.86	20.07	42.81	1.217
V5	15% Biochar + Compost	16B	1920	4.74	25.88	40.95	1.26
V5	15% Biochar + Compost	15A	2485.8	4.87	25.32	41.97	1.279
V5	15% Biochar + Compost	15B	2571.7	4.52	26.81	40.85	1.293
Control	15% Biochar + Compost	14A	2642	4.54	27.02	39.36	1.394
Control	15% Biochar + Compost	14B	2921.4	4.28	27.42	40.86	1.409
Control	15% Biochar + Compost	13A	1864.4	4.69	25.77	41.39	1.309
Control	15% Biochar + Compost	13B	2099.8	4.68	27.6	39.28	1.32
V5	20% Biochar + Compost	17A	1022.4	4.7	26.37	39.16	1.217
V5	20% Biochar + Compost	17B	958	4.68	24.14	41.81	1.229
V5	20% Biochar + Compost	18A	1714.4	4.69	27.64	41.01	1.321
V5 Control	20% Biochar + Compost	18B	1956.1	4.79	26.47	39.72	1.349
Control Control	20% Biochar + Compost 20% Biochar + Compost	19A 19B	1542.2 2542.3	4.49 5.32	23.74 24.93	41.32 41.22	1.319 1.229
Control	20% Biochar + Compost	20A	1991.3	5.18	24.93	41.22	1.229
Control	20% Biochar + Compost	20R	2260.3	5.04	24.63	41.46	1.272
V5	100% Biochar + NPK	24A	2266	4.69	26.42	38.93	1.276
V5	100% Biochar + NPK	24B	527.7	4.51	22.91	41.81	1.208
V5	100% Biochar + NPK	23A	1317.7	4.64	22.7	40.08	1.195
V5	100% Biochar + NPK	23B	2474.4	4.99	25.38	40.42	1.251
Control	100% Biochar + NPK	22A	1514.4	4.69	22.93	41.52	1.181
Control	100% Biochar + NPK	22B	850.1	4.82	23.86	39.89	1.169
Control	100% Biochar + NPK	21A	1988.9	4.86	26.89	38.74	1.325
Control	100% Biochar + NPK	21B	1544.5	5.1	26.16	39.65	1.236
V5	100% Compost	25A	1390.2	4.58	22.96	41.17	1.246
V5 V5	100% Compost	25B	946.3	4.78	23.71	40.93	1.221
V5 V5	100% Compost 100% Compost	26A 26B	993.6 1489.3	4.91 3.77	23 24.31	41.71 42.34	1.189 1.385
Control	100% Compost	206 27A	1923.5	4.55	24.31	42.34	1.365
Control	100% Compost	27R 27B	1389.3	5.06	23.07	39.32	1.221
Control	100% Compost	28A	1302.4	4.74	24.64	40.81	1.178
Control	100% Compost	28B	1144.4	4.98	26.49	36.94	0.97
V5	No fertilization	32A	580.3	4.67	25.67	38.37	1.322
V5	No fertilization	32B	847.2	4.96	22.53	39.98	1.121
V5	No fertilization	31A	1424.1	4.85	24.29	38.27	1.197
V5	No fertilization	31B	1192	4.92	23.3	40.12	1.163
Control	No fertilization	30A	265				1.278
Control	No fertilization	30B	674.4	4.87	23.64	39.63	1.224
Control	No fertilization	29A	995.6	4.94	24.51	39.27	1.309
Control V5	No fertilization	29B	1070.9	4.82	25.14	36.75	1.233
V5 V5	NPK NPK	33A 33B	988 1081.2	5.12 4.61	25.58 28.61	37.49 38.86	1.164 1.371
V5 V5	NPK	33B 34A	302.6	4.01	20.01	30.00	1.371
		34A 34B	940.9	4.66	26.42	39.14	1.033
V5	INPK			4.00	2072	55.14	1.255
V5 Control	NPK NPK			4.75	23.46	40.52	1.105
V5 Control Control	NPK NPK NPK	35A 35B	697.5 873.2	4.75 4.38	23.46 23.19	40.52 39.57	1.105 1.131
Control	NPK	35A	697.5				

BIO4A	D2.3:	Compost	agronomic
DIU4A	protoco	ol optimizatio	n trial

2021 – L2 Results (Camelina crop)

Plot	Treatment	Rep	Variety	Date of background fertilization	Seeding date	Flowering date	End of flowering	Days of flowering	Harvest date	Height (cm)	Lodging	Shattering	Yield (kg/ha)	%Moisture	%Protein (Dry matter)	%Oil (Dry matter)	TSW (g)
1	No fertilization	1	Control	25/11/2020	25/11/2020	07/04/2021	19/05/2021	42	08/06/2021	52.5	0	0	36.5	5.85	27.42	32.81	0.966
2	No fertilization	2	V5	25/11/2020	25/11/2020	07/04/2021	19/05/2021	42	08/06/2021	52.5	0	0	99.0	5.32	25.86	38.66	1.183
3	No fertilization	3	Control	25/11/2020	25/11/2020	07/04/2021	19/05/2021	42	08/06/2021		0	0	81.3	4.29	23.32	38.13	1.097
4	fertilization NPK	4	V5 V5	25/11/2020 25/11/2020	25/11/2020 25/11/2020	07/04/2021 20/03/2021	19/05/2021 26/04/2021	42 37	08/06/2021 28/05/2021	62.5	0	0	60.5 57.3	5.33 5.79	26.32 25.48	39.89 39.38	0.876
6	NPK	2	Control	25/11/2020	25/11/2020	20/03/2021		37	28/05/2021	67.5	0	0	656.3	4.4	24.32	40.53	1.139
7	NPK	3	V5	25/11/2020	25/11/2020	20/03/2021	26/04/2021	37	28/05/2021		0	0	553.9	4.68	24.82	41.67	1.214
8	NPK	4	Control	25/11/2020	25/11/2020	20/03/2021	12/05/2021	53	08/06/2021		0	0	248.7	4.06	23.33	38.63	1.211
9	10% Biochar + Compost	1	Control	25/11/2020	25/11/2020	01/04/2021	26/04/2021	25	28/05/2021	62.5	0	0	312.5	4.2	24.09	41.21	1.049
10	10% Biochar + Compost	2	V5	25/11/2020	25/11/2020	01/04/2021	26/04/2021	25	28/05/2021	65	0	0	31.3	4.62	24.81	43.79	1.089
11	10% Biochar + Compost	3	Control	25/11/2020	25/11/2020	20/03/2021	26/04/2021	37	28/05/2021		0	0	35.6	4.3	23.92	43.17	1.094
12	10% Biochar + Compost	4	V5	25/11/2020	25/11/2020	01/04/2021	26/04/2021	25	28/05/2021		0	0	40.3	4.93	24.22	41.58	0.936
13	15% Biochar + Compost	1	V5	25/11/2020	25/11/2020	20/03/2021	26/04/2021	37	28/05/2021	65	0	0	250.0	4.25	23.64	43.16	1.104
14	15% Biochar + Compost 15% Biochar	2	Control	25/11/2020	25/11/2020	20/03/2021	26/04/2021	37	28/05/2021	70	0	0	119.8	4.22	23.44	40.37	1.148
15	+ Compost 15% Biochar	3	V5	25/11/2020	25/11/2020	20/03/2021	26/04/2021	37	28/05/2021		0	0	203.3	4.82	26.51	38.78	1.089
16	+ Compost 20% Biochar	4	Control	25/11/2020	25/11/2020	20/03/2021	12/05/2021	53	08/06/2021		0	0	409.9	4.34	24.34	43.42	1.158
17	+ Compost 20% Biochar	1	Control	25/11/2020	25/11/2020	01/04/2021	12/05/2021	41	08/06/2021	62.5	0	0	296.9	4.15	24.02	42.71	1.159
18	+ Compost 20% Biochar	2	V5	25/11/2020	25/11/2020	20/03/2021	26/04/2021	37	28/05/2021	67.5	0	0	328.1	4.17	23.65	43.37	1.174
19	+ Compost	3	Control	25/11/2020	25/11/2020	01/04/2021	26/04/2021	25	28/05/2021		0	0	142.3	4.71	24.45	43.4	1.108
20	20% Biochar + Compost	4	V5	25/11/2020	25/11/2020	20/03/2021	26/04/2021	37	28/05/2021		0	0	362.9	4.19	24.33	39.84	1.165
21	100% Biochar + NPK	1	V5	25/11/2020	25/11/2020	20/03/2021	26/04/2021	37	28/05/2021	65	0	0	343.8	4.58	23.4	42.43	1.061
22	100% Biochar + NPK	2	Control	25/11/2020	25/11/2020	01/04/2021	26/04/2021	25	28/05/2021	67.5	0	0	572.9	4.2	24.18	41.21	1.115
23	100% Biochar + NPK	3	V5	25/11/2020	25/11/2020	20/03/2021	26/04/2021	37	28/05/2021		0	0	645.3	3.89	23.79	45.28	1.139
24	100% Biochar + NPK	4	Control	25/11/2020	25/11/2020	20/03/2021	12/05/2021	53	08/06/2021		0	0	26.9	4.31	24.12	41.12	1.137
25	100% Compost	1	Control	25/11/2020	25/11/2020	20/03/2021	26/04/2021	37	28/05/2021	60	0	0	1697.9	4.29	24.2	38.79	1.083
26	100% Compost	2	V5	25/11/2020	25/11/2020	01/04/2021	26/04/2021	25	28/05/2021	72.5	0	0	250.0	4.16	23.8	41.88	1.12
27	100% Compost	3	Control	25/11/2020	25/11/2020	01/04/2021	26/04/2021	25	28/05/2021		0	0	198.2	4.43	23.9	40.63	1.13
28	100% Compost	4	V5	25/11/2020	25/11/2020	01/04/2021	12/05/2021	41	08/06/2021		0	0	53.8	4.03	24.54	42.39	1.057
29	No fertilization No	5	V5	25/11/2020	25/11/2020	07/04/2021	19/05/2021	42	08/06/2021	62.5	0	0	119.8	5.01	25.57	40.69	1.115
30	fertilization No	6	Control	25/11/2020	25/11/2020	07/04/2021	19/05/2021	42	08/06/2021	62.5	0	0	302.1	4.55	23.84	40.69	1.064
31	fertilization	7	V5	25/11/2020	25/11/2020	07/04/2021	19/05/2021	42	08/06/2021		0	0	330.3	5.14	24.94	39.91	1.083
32	fertilization	8	Control	25/11/2020	25/11/2020	07/04/2021	19/05/2021	42	08/06/2021		0	0	100.8	4.63	25.33	37.63	0.966
33	NPK	5	Control	25/11/2020	25/11/2020	01/04/2021	19/05/2021	48	08/06/2021	57.5	0	0	161.5	4.35	24.51	40.09	1.062
34 35	NPK NPK	6	V5 Control	25/11/2020 25/11/2020	25/11/2020 25/11/2020	01/04/2021 01/04/2021		25 25	28/05/2021	62.5	0	0	390.6 182.9	5.13 4.25	24.69 23.81	37.39 37.96	1.033
35	NPK	8	V5	25/11/2020	25/11/2020	01/04/2021		41	28/05/2021 08/06/2021		0	0	618.3	4.25	23.81 24.88	37.96	0.957
30	NPK	ð	V5	23/11/2020	23/11/2020	01/04/2021	12/05/2021	41	08/06/2021		U	U	018.3	4.4	24.88	41.04	0.957