

Advanced Sustainable Biofuels for Aviation

Use of biochar as a soil amendment on *Camelina sativa* (L.Crantz) yield for sustainable oil production

Prepared by Tommaso Barsali Francesca Tozzi EUBCE, Session 1BO.1.4 JUNE 6th, 2023

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 789562.

PROJECT CONCEPT

Accelerate the deployment of Aviation Biofuels, enabling commercial production. Supporting the accomplishment of pre-commercial plant(s) for advanced biofuels for aviation based on sustainable biomass feedstock.

PROJECT OBJECTIVES

To bring HEFA to full commercial scale in new plant using residual lipids (Used Cooking Oil - UCO);

2) To investigate alternative supply of sustainable feedstocks recovering EU MED marginal land for drought resistant crop production;

3) To test the entire chain and logistic at industrial scale, and assess environmental performances.

4) Positive GHG and energy balance expected

Highlights (technological/non-technological):

- New Aviation Biofuel plant producing HEFA
- Production and test of HEFA in commercial flights in non-segregated mode
- R&D Work on marginal land in Spain and Italy recovered by biochar/compost addition producing non-food sustainable lipids
- Dedicated Dissemination, Communication and Exploitation action

1-Year Field Trials

1-year field trials

RESEARCH GOAL

Evaluation of the effect of biochar alone or mixed with compost on:

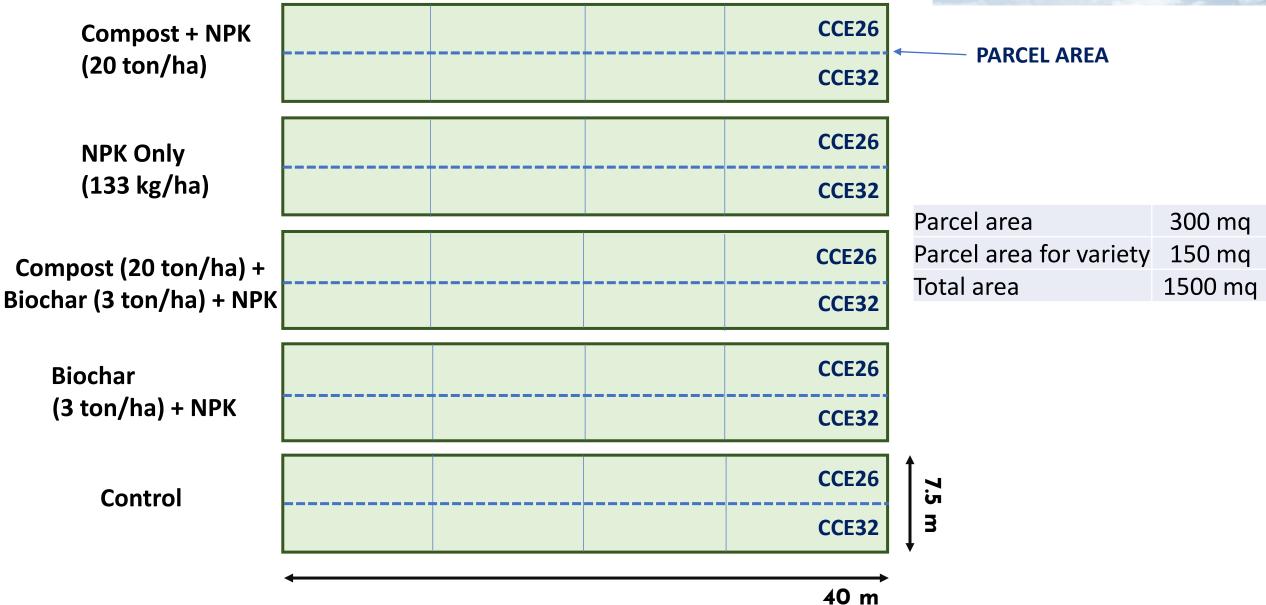
- Camelina seed yield, biomass and oil yield and quality
- Soil chemical and physical properties
- Nitrogen Use Efficiency

AGRONOMIC AND ENVIRONMENTAL CONDITIONS

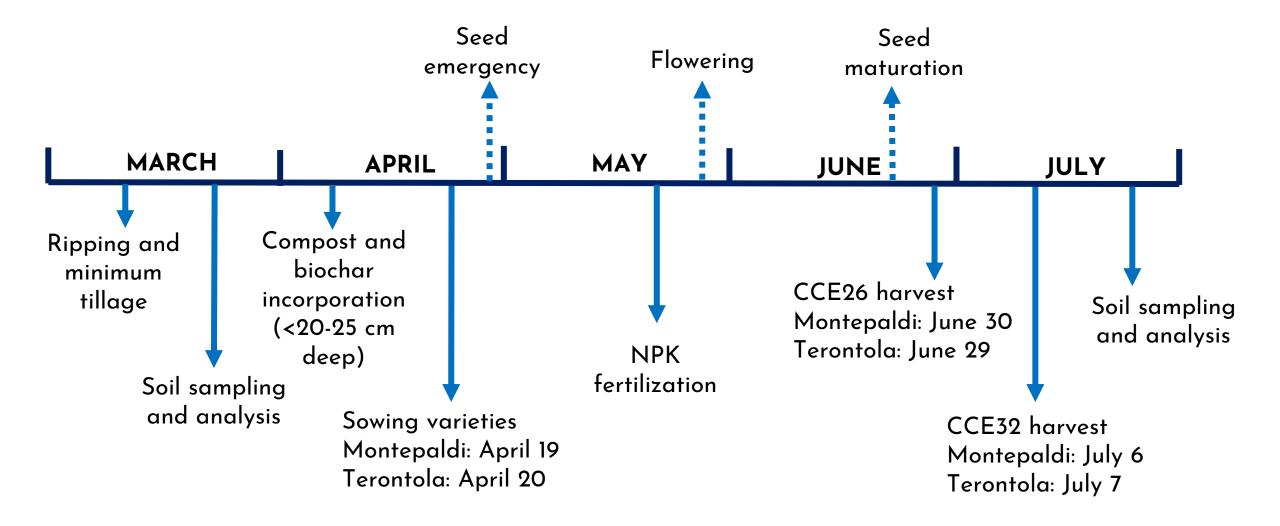
- Field experiment
- 2 locations: Terontola (Arezzo) and Montepaldi (Florence)
- No artificial irrigation
- **Biochar** from poplar (550°C, slow pirolysis)
- 2 Camelina varieties: short cycle (CCE26) and medium cycle (CCE32)

TREATMENTS

- **CONTROL**: no fertilization or organic amendement
- NPK FERTILIZATION (eq. to 133 kg/ha)
- COMPOST (eq. to 20 ton/ha) + NPK
- **BIOCHAR** (eq. to 3 ton/ha) + NPK
- COMPOST (eq. to 20 ton/ha) + BIOCHAR (eq. to 3 ton/ha) + NPK


1-year field trials

----Bio4A



1-year field trial - DESIGN OF THE EXPERIMENT

1-year Italian field trial - MAIN AGRONOMICOPERATIONS

4A

Soil field trail in Montepaldi

- Loamy texture (with high clay content)
- No tillage for more than 15 years

Soil field trial in Terontola

-Bio4A

- Loamy texture (with high sandy content)
- Soil cultivated annually with conventional agricultural management

Camelina in Montepaldi

- Very dry season
 High temperature from May (> 30°C)
- Plants were stressed

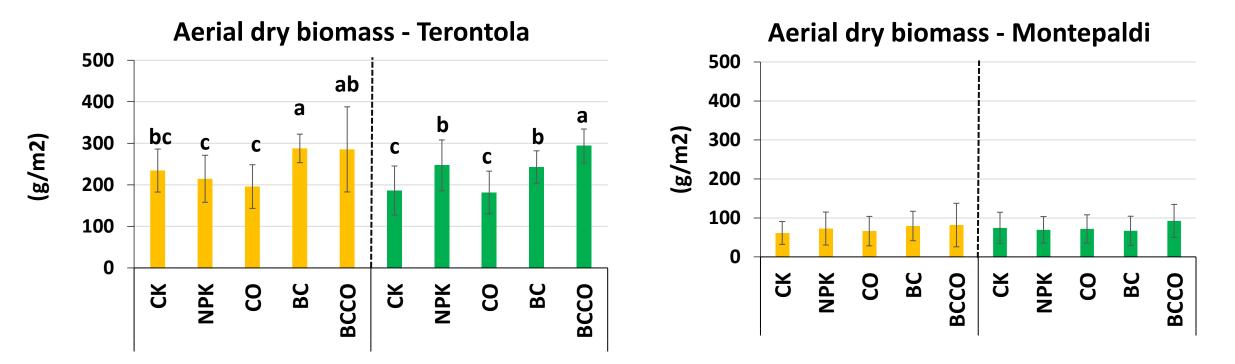
Precipitations (mm)	MONTEPALDI		
april	66.0		
may	34.6		
june	4.6		
july	0.2		
tot	105.4		

Camelina in Terontola

- Very dry season
- High temperature from may (> 30°C)

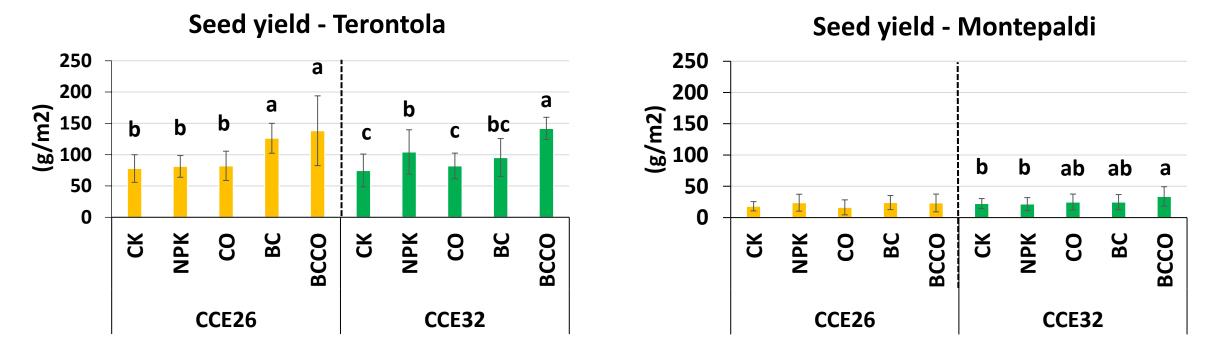
Precipitations (mm)	TERONTOLA
april	101
may	26
june	29
july	5
tot	160.8

Camelina seed processing



1-Year Results Yield

1-year field trial - CAMELINA BIOMASS AT HARVEST

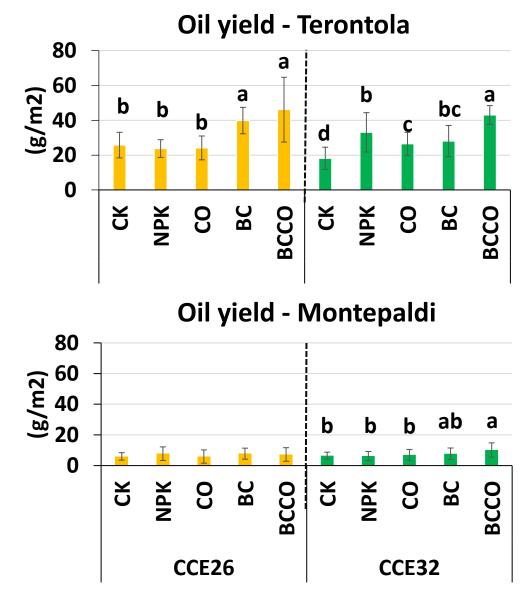

Aerial dry biomass includes all plant organs with the exception of seed and root system

 Camelina plants performed better in Terontola location => probably better agro-environmental conditions

Fisher's test p<0.001

1-year field trial - CAMELINA GRAIN YIELD

----Bio4A



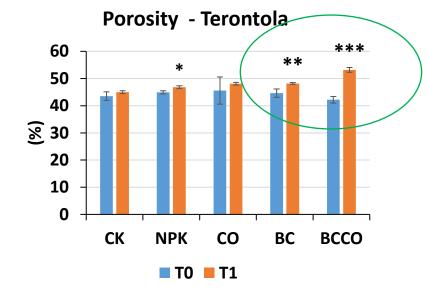
- Statistical differences were detected except for CCE26 in Montepaldi
- The highest yield were collected with BCCO in both locations
- Different genotype effect
- Terontola CCE26 with BC and BCCO increment of about 65%
- Terontola CCE32 with BCCO increment of about 57%
- Montepaldi CCE32 with BCCO increment of about 47%

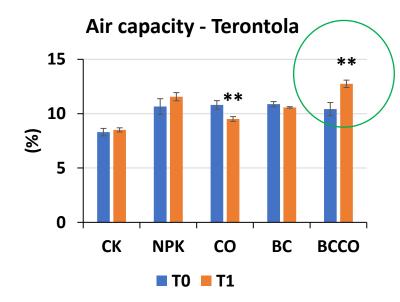
Fisher's test p<0.001

1-year field trial - CAMELINA OIL YIELD

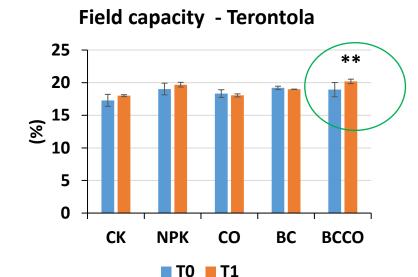
----Bio4A

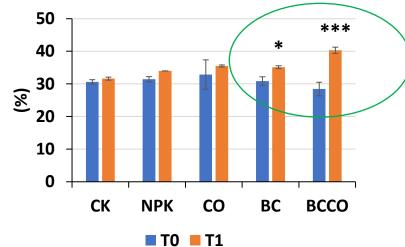
Fisher's test p<0.001

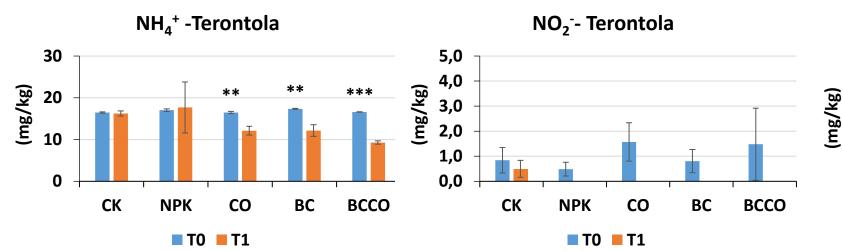


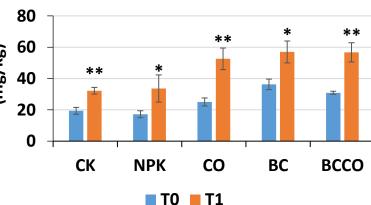


Effects on soil properties

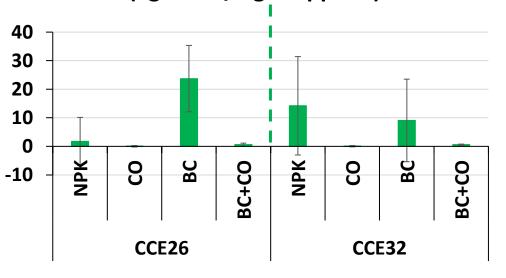

1-year field trial - Effect on soil properties




In Montepaldi, no significant variations were observed, probably due to the high clay content



1-year field trial - Effect on soil properties



Treatments	Nitrogen (kg) applied in each plot		
СК	0		
NPK	0.44		
СО	21.52		
BC	0.44		
BCCO	21.52		

In Montepaldi, no significant variations regarding the main chemical properties were observed

Nitrogen use efficiency (kg Yield / kg N applied)

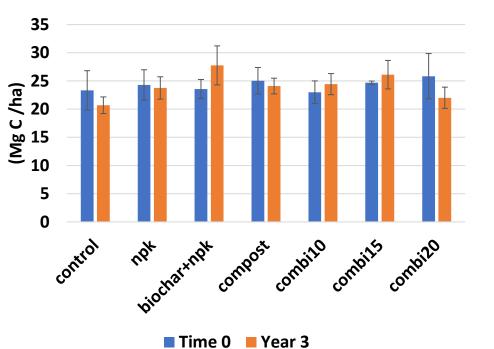
3-year Spanish field trial - Effect on soil properties

RESEARCH GOAL

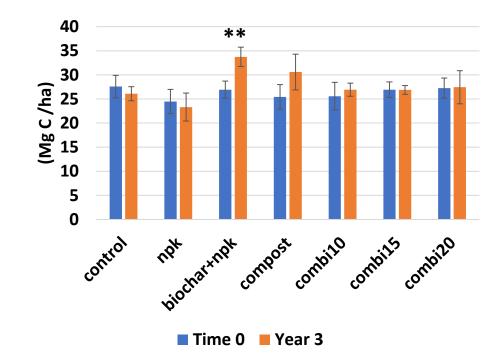
Evaluation of the effect of different biochar-based amendments on:

- Soil Corg and soil health
- Camelina / Barley rotation and yield

AGRONOMIC AND ENVIRONMENTAL CONDITIONS


- Field experiment
- 2 locations: Madrid and Ciudad Real
- No artificial irrigation
- **Biochar** from poplar (550°C, slow pirolysis)

TREATMENTS


- CONTROL: no fertilization or organic amendement
- MINERAL FERTILIZATION
- ONLY BIOCHAR
- COMBI 10%
- COMBI 15%
- COMBI 20%
- ONLY COMPOST

3-year Spanish field trial - Effect on carbon stock

----Bio4A

Carbon stock - Madrid

Carbon stock - L2 Ciudad Real

Where:

$$CS = \frac{\left(C_{ORG} \, x \, BD \, x \, T \, x(1-F)\right)}{100}$$

 $CS_{Adjusted} = \left(\frac{BD_O}{BD_N}\right) x CS_n$

 CS_R is the carbon stock at the initial measurement expressed as Mg of C/ha;

 $\mathsf{C}_{\mathsf{org}}$ is the organic carbon content (g C/ha);

BD is the soil bulk density (kg/m³);

T is the thickness (depth, m);

F is the volume of coarse mineral fraction in % by mass ($m^3/m^3 \times 100$).

3-year Spanish field trial - Effect on soil properties

Madrid	Stock (Mg of C /ha)			Ciudad Real	Stock (Mg of C /ha)		
Treatment	Time 0	Year 3	C stock increment (%)	Treatment	Time 0	Year 3	C stock increment (%)
control	23.3	20.7	-11.3	control	27.6	26.1	-5.4
npk	24.3	23.8	-2.2	npk	24.5	23.3	-4.8
biochar+npk	23.6	27.8	17.8	biochar+npk	26.9	33.7	25.3
Compost + npk	25.0	24.1	-3.7	Compost + npk	25.4	30.6	20.3
Combi10 + npk	23.0	24.4	6.3	Combi10 + npk	25.6	26.9	5.3
Combi15 + npk	24.7	26.1	5.8	Combi15 + npk	26.9	26.9	-0.2
Combi20 + npk	25.8	22.0	-14.8	Combi20 + npk	27.3	27.4	0.7

54A

- 1) BAU Agriculture depletes soil Carbon Stock
- 2) Carbon Stock is a product of Corg and Bulk Density
- 3) Labile Corg is subject to oxidation

Improved management practices should be accompanied by minimum/no disturbance of soil structure.

Conclusions

- In Terontola, Camelina performed very well in the presence of biochar mixed with compost alone, but also with biochar alone
- An improvement of the soil physical characteristics was observed in the biocharmixed plots
- With only biochar, higher nitrogen use efficiency
- Biochar increases organic carbon stock long term experiment
- Bulk density is equally key for Carbon Stock as Corg! Attention should be paid to combination of sustainable agricultural practices

Advanced Sustainable Biofuels for Aviation

www.bio4a.eu @BIO4A info@bio4a.eu

Thanks for your attention!

etaflorence* renewableenergies

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 789562.