

Sustainability assessment of low-ILUC feedstock SAF value chains at scale

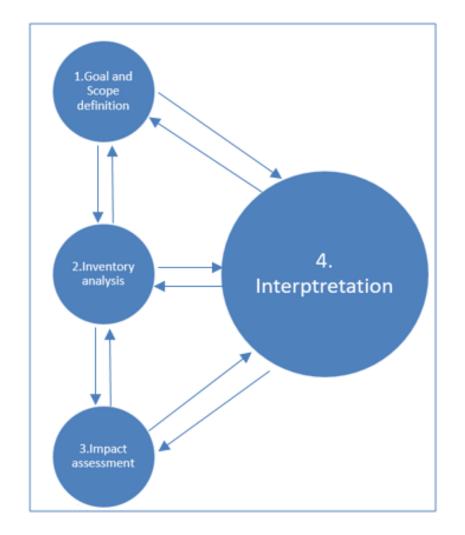
Enrique Medina Martos <u>emedina@cener.com</u>

Dr. Juan Felipe Bermeo Losada <u>jfbermeo@cener.com</u>

Brussels - April 19, 2023

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 789562.

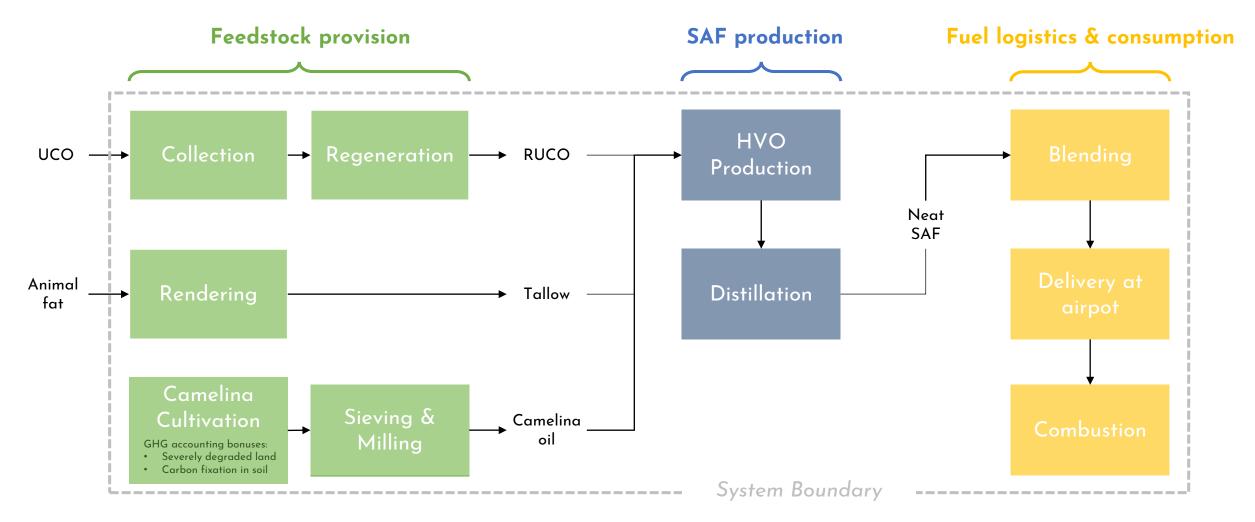
Background



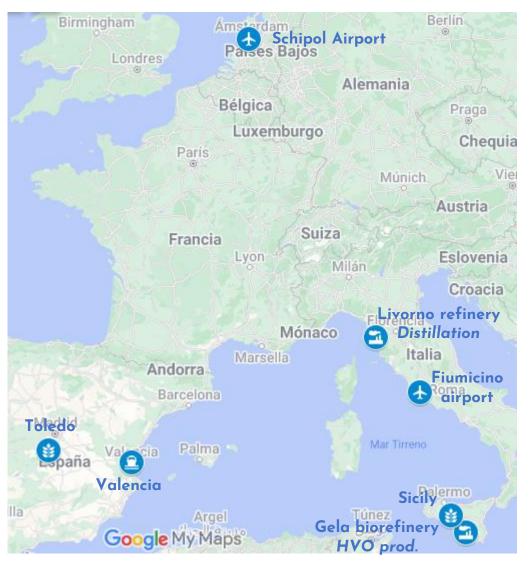
CENER is the partner coordinating WP4 (Evaluation) and main responsible for:

- T4.3 Environmental sustainability assessment
- T4.4 Socio-economic sustainability assessment

Life cycle assessment (LCA)



- ISO 14040:2006 Environmental Management—Life cycle assessment –Principles and framework.
- ISO 14044:2006 Environmental management -- Life cycle assessment -- Requirements and guidelines.


Goal: To assess the GHG emissions (CO_{2eq}) of producing, delivering and combusting 1 MJ SAF

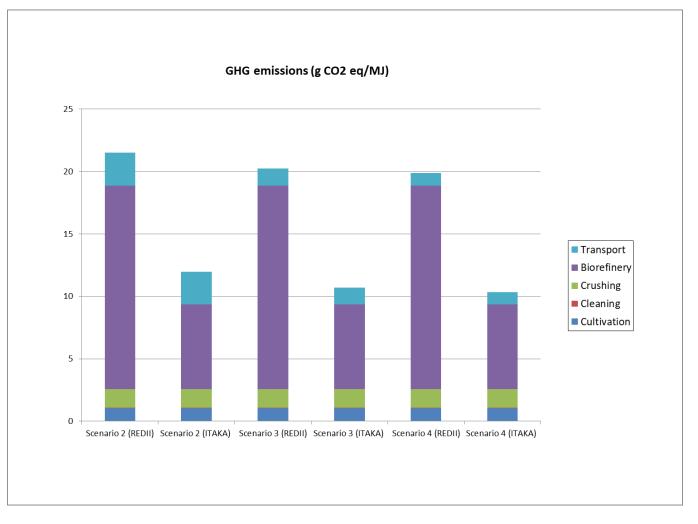
Scope: Well-to-wake approach

1) 😝 Cultivation 2) 🔁 SAF Production 3) 👍 Airport

Case(s)	Feedstock	Cultivation	Airport	Transportation [‡]
#1	UCO	n/a	NL, Shiphol	(T)+(S)+(S+P)
#2	Tallow	n/a	NL, Shiphol	(T)+(S)+(S+P)
#3-6 [†]	Camelina	Spain	NL, Shiphol	(T+S)+(S)+(S+P)
#7-10 [†]	Camelina	Italy	NL, Shiphol	(T)+(S)+(S+P)
#11	UCO	n/a	ITA, Fiumicino	(T)+(S)+(T)
#12	Tallow	n/a	ITA, Fiumicino	(T)+(S)+(T)
#13-16 [†]	Camelina	Spain	ITA, Fiumicino	(T+S)+(S)+(T)
#17-20 [†]	Camelina	Italy	ITA, Fiumicino	(T)+(S)+(T)

[†] Listed cases considering camelina cultivation comprehend 4 subcases: a: mineral fertiliser; b: addition of char; c: addition of compost; d: addition of COMBI.

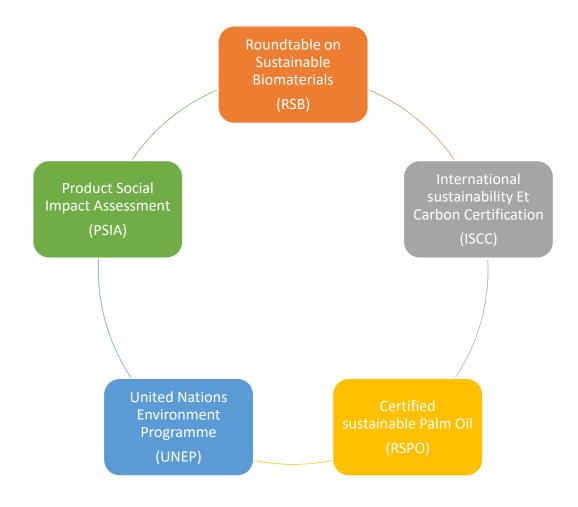
[‡] Transportation (Feedstock to refinery)+(Gela-Livorno)+(SAF delivery)
Transportation types: P: Pipeline; S: Ship; T: Truck



Results from preliminary deliverable

	Bioretinery data		Transport distance
	RED II	ITAKA	
Scenario 2	16,3	6,70	Cultivation/Crushing ES+ Biorefinery FR+ Final use NL
Scenario 3	16,3	6,70	Cultivation/Crushing FR+ Biorefinery FR+ Final use FR
Scenario 4	16,3	6,70	RED Deafult value: 1 g CO2/MJ

Savings estimated at 73-87% compared to REDII fossil fuel reference of 94 g CO_{2ea}/MJ


Updated inventory data still requiring some refinement. Final results expected (D4.3) by next next month.

T4.4 Socio-economic sustainability assessment

Methodologies and certifications analysed in the study

T4.4 Socio-economic sustainability assessment

Implemented methodology

Scale level	Description	Risk level
+2	Ideal performance	Very Low Risk
+1	Progress beyond compliance	Low risk
0	Compliance with local laws	Medium risk
-1	Non-compliant situation, improving	High risk
-2	No data or Non-compliant situation	Very high risk

Value Chain Actors

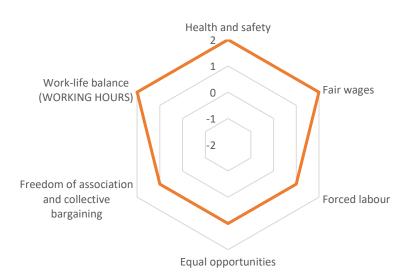
Local communities

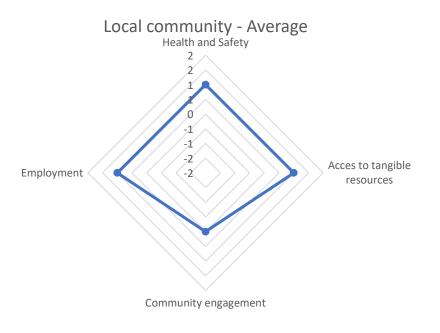
T4.4 Socio-economic sustainability assessment

Results

WORKERS

Health and safety
Fair wages
Forced labour
Equal opportunities
Freedom of association and collective bargaining
Work-life balance (WORKING HOURS)


LOCAL COMMUNITY


Health and Safety
Acces to tangible resources
Community engagement
Employment

VALUE CHAIN ACTORS

Land rights
Fair trade relation
Raw materials
Conflict zones
Child labour

Workers - Average

Value chain actors - Average

Advanced Sustainable Biofuels for Aviation

www.bio4a.eu @BIO4A info@bio4a.eu

Project Partners

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 789562.